
Adobe Premiere Pro CC
SDK Guide

Version 13.0
November 1, 2018

Adobe Premiere Pro CC Software Development Kit
Copyright © 1992–2018 Adobe Systems Incorporated. All rights reserved.

The information in this document is furnished for informational use only, is subject to change without notice, and
should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes
no responsibility or liability for any errors or inaccuracies that may appear in this document. The software described
in this document is furnished under license and may only be used or copied in accordance with the terms of such
license.

Adobe, Adobe Premiere, Adobe After Effects, Adobe Photoshop, Adobe Illustrator, Adobe Type Manager, ATM and
PostScript are trademarks of Adobe Systems Incorporated that may be registered in certain jurisdictions. Microsoft
and Windows are registered trademarks of Microsoft Corporation. Macintosh and Apple are registered trademarks,
and Mac OS are trademarks of Apple Computer, Inc. All other products or name brands are trademarks of their
respective holders.

Version History
13 February 1995 Matt Foster, Nick Schlott Version 4.0 - first Windows release
9 February 1996 Brian Andrews Version 4.2
20 April 1998 Brian Andrews Version 5
10 December 2000 Bruce Bullis & Eric Sanders Version 6 release 1
10 May 2001 Bruce Bullis Version 6 release 2
19 July 2002 Zac Lam & Bruce Bullis Version 6.5
21 August 2003 Zac Lam Version 1.0 (Premiere Pro)
25 May 2004 Zac Lam Version 1.5
17 January 2006 Zac Lam Version 2.0 release 1
13 July 2006 Zac Lam Version 2.0 release 2
5 October 2007 Zac Lam Version CS3
21 September 2009 Zac Lam Version CS4
28 April 2010 Zac Lam Version CS5
2 May 2011 Zac Lam Version CS5.5
30 April 2012 Zac Lam Version CS6 release 1
19 June 2012 Zac Lam Version CS6 release 2
16 July 2013 Zac Lam Version CC
21 October 2013 Zac Lam Version CC October release
16 June 2014 Zac Lam Version CC 2014
4 August 2015 Zac Lam Version CC 2015
4 November 2016 Zac Lam Version CC 2017
6 April 2017 Zac Lam Version CC 2017.1
13 November 2017 Zac Lam Version 12.0
16 July 2018 Zac Lam Version 13.0 pre-release
1 November 2018 Bruce Bullis Version 13.0

TOCTable of Contents

Table of Contents

1. Introduction
What Premiere Plug-ins Do ���������������� 16

SDK Audience �� 16

What’s New? �� 17

What’s New in 12.017

Effects and Transitions �������������������������17

What’s New in CC 2017.118

Importers ���18

Exporters ���18

Transmit ���18

VR Video Support ���������������������������������18

What’s New in CC 201718

VR Video Support ���������������������������������18

New Sample Projects ���������������������������19

New Panel/Scripting Capabilities ���������19

Miscellaneous ��������������������������������������19

What’s New in CC 2015.420

Effects and Transitions �������������������������20

What’s New in CC 2015.3?20

Control Surfaces �����������������������������������20

Importers ���20

Exporters ���20

Effects ��21

Misc ���21

What’s New in CC 2015.1?21

Transmit ���21

What’s New in CC 2015?21

After Effects-Style Transitions ��������������21

Source Settings = Effect + Importer ����22

Importers ���23

Exporters ���23

Transmitters ���23

Miscellaneous ��������������������������������������23

New Sample Projects ���������������������������24

What’s New in CC 2014 (8.2)?24

What’s New in CC 2014 (8.1)?24

What’s New in CC 2014 (8.0.1)?24

What’s New in CC 2014?24

What’s New in CC October 2013?25

What’s New in CC July 2013?25

What’s New in CC?26

New Edit to Tape Panel �������������������������26

New GPU Extensions for Effects and

Transitions ��������������������������������������26

Closed Captioning Support in Importer

and Exporter APIs ���������������������������26

Miscellaneous Improvements ��������������26

What’s New in CS6.0.x?27

What’s New in CS6?27

Transmit API ��27

Exporter Enhancements �����������������������27

Stereoscopic Video Pipeline ������������������28

Other Changes �������������������������������������28

What’s New in CS5.5?29

What’s New in CS5?30

Encore CS5 ���30

Mac 64-Bit and Cocoa ��������������������������30

What’s New in CS4?31

New Renderer API and Custom Pixel

Formats ��31

Sequence Preview Formats ������������������31

Separate Processes During Export ��������31

XMP metadata �������������������������������������31

More Pixel Format Flexibility ����������������32

Legacy API ..32

Where Do I Start? ���������������������������������� 32

Document Overview ���������������������������� 32

Documentation Conventions33

Getting Support and Providing

Feedback ��� 33

Premiere Pro Plug-in Types ����������������� 34

Plug-in Support Across Adobe Video

and Audio Applications35

Premiere Elements Plug-in Support �����35

What Exactly Is a Premiere Plug-in? 36

Sample Projects ������������������������������������ 36

Descriptions ...36

How To Build the SDK Sample

Projects ..40

Debugging Plug-ins ����������������������������� 41

Load ‘Em Up! �� 42

Plug-in Caching42

Resolving Plug-in Loading Problems

 ..43

Library Linkage ������������������������������������43

No Shortcuts ..44

Plug-in Installation ������������������������������� 44

Windows ...44

macOS ..45

Plug-in Naming Conventions46

Plug-in Blacklisting46

Creating Sequence Presets46

Application-level Preferences47

Dog Ears ..47

Localization ��� 48

Best Practices �� 49

Structure Alignment49

2. Resources
Plug-In Property Lists (PiPL) Resource

 �� 50

Which Types of Plug-ins Need PiPLs?

 ..50

A Basic PiPL Example50

How PiPLs Are Processed By Resource

Compilers ..51

IMPT Resource ��������������������������������������� 51

3. Universals
Time �� 53

scale over sampleSize53

PrTime ..54

Video Frames ��� 54

Pixel Formats and Color Spaces ��������� 54

What Format Should I Use?54

Importers ���55

Effects ��55

Exporters and Transmitters ������������������55

Other Considerations ���������������������������56

Byte Order ..56

Custom Pixel Formats60

Smart Rendering ���������������������������������60

Pixel Aspect Ratio ��������������������������������� 61

Fields ��� 61

Audio �� 62

32-bit Float, Uninterleaved Format .62

Audio Sample Types62

Audio Sample Frames63

Audio Sample Rate63

Audio Channel Types63

Memory Management ������������������������� 64

What Really is a Memory Problem? .64

Solutions for Memory Contention ...65

Basic Types and Structures ����������������� 65

Suites �� 68

SweetPea Suites ������������������������������������ 68

Overview ...68

Acquiring and Releasing the Suites 69

Versioning ��70

App Info Suite ...70

Application Settings Suite71

Audio Suite ...71

Captioning Suite71

Clip Render Suite71

Error Suite ...72

File Registration Suite...........................72

Flash Cue Marker Data Suite72

Image Processing Suite72

Marker Suite ...72

Memory Manager Suite72

ReserveMemory �����������������������������������73

Pixel Format Suite73

Playmod Overlay Suite74

RenderImage ���������������������������������������74

GetIdentifier ��75

HasVisibleRegions ��������������������������������75

VariesOverTime ������������������������������������76

PPix Cache Suite76

PPix Creator Suite76

CreatePPix ��77

ClonePPix ���77

PPix Creator 2 Suite78

PPix Suite ..78

PrPPixBufferAccess ������������������������������78

Dispose ��78

GetPixels ��78

GetBounds ���79

GetRowBytes ���������������������������������������79

GetPixelAspectRatio �����������������������������79

GetUniqueKey ��������������������������������������80

GetUniqueKeySize ��������������������������������80

GetRenderTime ������������������������������������80

PPix 2 Suite ...81

RollCrawl Suite ..81

Sequence Info Suite81

String Suite ...81

Threaded Work Suite81

Time Suite ...82

pmPlayTimebase����������������������������������82

PrVideoFrameRates ������������������������������82

GetTicksPerSecond �������������������������������82

GetTicksPerVideoFrame �����������������������82

GetTicksPerAudioSample ���������������������83

Video Segment Render Suite.............83

Video Segment Suite83

Window Suite ..84

Legacy Callback Suites ������������������������ 84

piSuites ..84

Memory Functions �������������������������������85

Window Functions �������������������������������86

PPix Functions �������������������������������������86

Utility Functions �����������������������������������88

Timeline Functions �������������������������������90

Bottleneck Functions93

4. Hardware Integration
Hardware Integration Components �� 97

Importers ..97

Recorders ..97

Exporters ...97

Transmitters ...98

ClassID, Filetype and Subtype ������������ 98

ClassData Functions ����������������������������� 98

5. Importers
What’s New �� 101

What’s New in Premiere Pro CC 2014

 ... 101

What’s New in Premiere Pro CC

October 2013 release?................. 101

What’s New in Premiere Pro CC? ... 101

What’s New in Premiere Pro CS6.0.2?

 ... 102

What’s New in Premiere Pro CS6? . 102

What’s New in Premiere Pro CS5.5?

 ... 102

What’s New in Premiere Pro CS5? . 103

What’s New in Premiere Pro CS4? . 103

What’s New in Premiere Pro CS3? . 104

Getting Started ����������������������������������� 105

The Basics of Import 105

Try the Sample Importer Plug-ins . 106

imGetSourceVideo versus

imImportImage 106

Asynchronous Import 106

privateData ... 107

Clip Source Settings 107

Showing a Video Preview in the Settings

Dialog ���108

File Handling .. 108

Quieting versus Closing a File �������������108

Growing Files �������������������������������������108

Importing from Streaming Sources ����108

Audio Conforming and Peak File

Generation 109

Quality Levels 110

Closed Captioning 110

N-Channel Audio 111

Multiple Streams 111

Stereoscopic Video �����������������������������111

Project Manager Support 112

Creating a Custom Importer 113

Real-Time Rolling and Crawling Titles

 ... 113

Troubleshooting 114

How to Get First Crack at a File �����������114

Format repeated in menu? �����������������114

Resources ... 114

Entry Point ... 114

Standard Parameters 115

Importer-Specific Callbacks 115

Selector Table �������������������������������������� 116

Selector Descriptions ������������������������� 118

imInit ... 118

Synthetic Importers ���������������������������119

Custom Importers ������������������������������119

imShutdown ... 119

imGetIndFormat 119

imGetSupports8 119

imGetSupports7 120

imGetInfo8 .. 120

imCloseFile .. 120

imGetIndPixelFormat 120

imGetPreferredFrameSize 121

imSelectClipFrameDescriptor 121

imGetSourceVideo 121

imCreateAsyncImporter 121

imImportImage 121

imImportAudio7 122

imGetPrefs8 .. 122

imOpenFile8 ... 123

imQuietFile .. 123

imSaveFile8 ... 123

imDeleteFile .. 124

imCalcSize8 ... 124

imCheckTrim8 124

imTrimFile8 .. 125

imCopyFile .. 125

imRetargetAccelerator 125

imQueryDestinationPath 126

imInitiateAsync ClosedCaptionScan

 ... 126

imGetNextClosedCaption 126

imCompleteAsync-

ClosedCaptionScan 126

imAnalysis ... 126

imDataRateAnalysis 127

imGetTimeInfo8 127

imSetTimeInfo8 127

imGetFileAttributes 127

imGetMetaData 127

imSetMetaData 128

imDeferredProcessing....................... 128

imGetAudioChannelLayout 128

imGetPeakAudio 128

imQueryContentState 128

imQueryStreamLabel 129

imGetSubTypeNames 129

imGetIndColorProfile 129

imQueryInputFileList 129

Return Codes ��������������������������������������� 130

Structures ��� 132

Structure Descriptions ���������������������� 133

imAcceleratorRec 133

imAnalysisRec 134

imAsyncImporterCreationRec 134

imAudioInfoRec7 135

imCalcSizeRec 135

imCheckTrimRec 136

imClipFrameDescriptorRec 137

imCompleteAsync-

ClosedCaptionScanRec 137

imIndColorProfileRec 138

imCopyFileRec 138

imDataRateAnalysisRec 139

imDeferredProcessingRec 140

imDeleteFileRec 140

imFileAccessRec8 140

imFileAttributesRec............................ 141

imFileInfoRec8 141

imFileOpenRec8 144

imFileRef .. 144

imFrameFormat 145

imGetAudioChannelLayoutRec 145

imGetNextClosedCaptionRec 145

imGetPrefsRec 147

imImageInfoRec 148

imImportAudioRec7 152

imImportImageRec 152

imImportInfoRec 155

imIndFormatRec 157

imIndPixelFormatRec 158

imInitiateAsync-

ClosedCaptionScanRec 159

imMetaDataRec 160

imPeakAudioRec 160

imPreferredFrameSizeRec 161

imQueryContentStateRec 161

imQueryDestinationPathRec 162

imQueryInputFileListRec 162

imQueryStreamLabelRec 163

imSaveFileRec8 163

imSourceVideoRec 164

imSubTypeDescriptionRec 165

imTimeInfoRec8................................... 165

imTrimFileRec8 166

Suites �� 167

Async File Reader Suite 167

Deferred Processing Suite 167

Media Accelerator Suite 167

6. Recorders
What’s New? �� 169

What’s New in Premiere Pro CC 2014?

 ... 169

What’s New in Premiere Pro CS6? . 169

What’s New in Premiere Pro CS5? . 170

What’s New in Premiere Pro CS4? . 170

No More Project Presets ���������������������170

What’s New in Premiere Pro CS3? . 170

Getting Started ����������������������������������� 170

Selector Calling Sequence 170

Try the Sample Recorder Plug-in .. 171

Metadata .. 172

Save Captured File Dialog 172

Switching Preview Area Between

Different Frame Sizes 172

Scene Detection 172

Scene Capture ������������������������������������172

Scene Searching ���������������������������������173

Entry Point ... 173

Standard Parameters 173

Recorder-Specific Callbacks 174

Selector Table �������������������������������������� 177

Selector Descriptions ������������������������� 178

recmod_Startup8................................ 178

recmod_Shutdown 178

recmod_GetSetupInfo8 179

recmod_ShowOptions 179

recmod_Open 179

recmod_Close 179

recmod_SetActive 180

recmod_SetDisp 180

recmod_Idle .. 180

recmod_PrepRecord8 180

recmod_StartRecord 181

recmod_ServiceRecord 181

recmod_StopRecord 181

recmod_CloseRecord 181

recmod_QueryInfo 181

Return Codes ��������������������������������������� 182

Structures ��� 183

Structure Descriptions ���������������������� 184

recInfoRec8 ... 184

recCapSetups8 186

recDisplayPos 187

recOpenParms 187

recCapturedFileInfo 188

recFileSpec8 .. 189

recSetupParms 189

recCapParmsRec8 189

recGetTimecodeRec 192

recCapInfoRec 193

recSceneDetectionParmsRec 194

7. Export Controllers

8. Exporters
What’s New �� 196

What’s New in CC 196

What’s New in CS6 197

What’s New in CS5.5 198

Export Controller API ��������������������������198

What’s New in CS5 198

Porting From the Compiler API 198

Getting Started ����������������������������������� 199

Media Encoder as a Test Harness .. 199

Adding Parameters 199

Updating Parameters Dynamically

 ... 199

Supporting “Match Source” 199

Get Video Frames and Audio Samples

 ... 200

Push Model ��200

Pull Model��200

Handling a Pause or Cancel by the

User (Pull Model only) 200

Creating Presets 201

AME Preset Browser ���������������������������202

Installation in CS4 ������������������������������202

Parameter Caching 202

Increment the Parameter Version �������203

Flush the Parameter Cache �����������������203

Multichannel Audio Layouts 203

Closed Captioning 204

Multiple File Formats 204

Exporters Used for Editing Modes 204

Sequence Encoder Presets ������������������204

Adding new Preview File Formats to

Existing Editing Modes �����������������205

Stereoscopic Video 205

Timeline Segments in Exporters ... 206

Smart Rendering 206

Entry Point ... 206

Standard Parameters 207

Selector Table �������������������������������������� 207

Selector Descriptions ������������������������� 208

exSelStartup ... 208

exSelBeginInstance 208

exSelGenerateDefaultParams 208

exSelPostProcessParams 208

exSelValidateParamChanged 209

exSelGetParamSummary 209

exSelParamButton 209

exSelExport ... 209

exSelQueryExportFileExtension 210

exSelQueryOutputFileList 210

exSelQueryStillSequence 210

exSelQueryOutputSettings 211

exSelValidateOutputSettings 211

exSelEndInstance 211

exSelShutdown 211

Return Codes ��������������������������������������� 211

Structures ��� 213

Structure Descriptions ���������������������� 213

exDoExportRec 213

exExporterInfoRec 214

exExporterInstanceRec 216

exGenerateDefaultParamRec 216

exParamButtonRec 217

exParamChangedRec 217

exParamSummaryRec 218

exPostProcessParamsRec 219

exQueryExportFileExtensionRec ... 219

exQueryOutputFileListRec 220

exQueryOutputSettingsRec 221

exQueryStillSequenceRec 222

exValidateOutputSettingsRec 222

Suites �� 223

Export File Suite................................... 223

Export Info Suite.................................. 223

GetExportSourceInfo ��������������������������223

Export Param Suite 225

Export Progress Suite 225

Export Standard Param Suite 226

AddStandardParams ��������������������������226

PostProcessParamNames �������������������226

QueryOutputSettings �������������������������227

MakeParamSummary ������������������������227

Exporter Utility Suite 227

DoMultiPassExportLoop ���������������������228

ReportIntermediateProgressFor-

RepeatedVideoFrame �������������������229

ReportEvent ���������������������������������������229

Palette Suite .. 230

Sequence Audio Suite 230

MakeAudioRenderer ��������������������������230

ReleaseAudioRenderer �����������������������231

GetAudio ��231

ResetAudioToBeginning ���������������������232

GetMaxBlip ��232

Sequence Render Suite 232

MakeVideoRenderer() ������������������������233

ReleaseVideoRenderer() ��������������������233

struct SequenceRender_ParamsRec ��233

struct SequenceRender_

GetFrameReturnRec ���������������������234

RenderVideoFrame() ��������������������������235

GetFrameInfo() ����������������������������������236

SetAsyncRenderCompletionProc() �����236

PrSDKSequence-

AsyncRenderCompletionProc() �����236

QueueAsyncVideoFrameRender() ������237

PrefetchMedia() ���������������������������������238

PrefetchMediaWithRenderParameters()

 ���238

CancelAllOutstandingMediaPrefetches()

 ���238

IsPrefetchedMediaReady() �����������������238

MakeVideoRendererForTimeline() �����239

MakeVideoRendererForTimeline-

WithFrameRate() ��������������������������239

ReleaseVideoRendererForTimeline() ��239

RenderVideoFrameAnd-

ConformToPixelFormat() ���������������239

MakeVideoRendererForTimeline-

WithStreamLabel() �����������������������240

Additional Details ������������������������������� 240

Multiplexer Tab Ordering 240

Creating a Non-Editable String in the

Parameter UI 240

Guidelines for Exporters in Encore 240

Naming Your Exporter ������������������������241

Naming Your Output ��������������������������241

Parameters ��241

Guidelines for Exporters in Premiere

Elements ... 243

Exporter Preset ����������������������������������243

Return Values �������������������������������������243

9. Transmitters
What’s New in Premiere Pro CS6.0.2?

 ... 246

Transmitter Basics ������������������������������ 246

Basic Organization 246

Video Formats 246

Fractional Resolution 247

Audio Format 247

Frame Rate .. 247

Dropped Frames 247

Sync Between Application UI and

Hardware Output 248

Dog Ears ... 248

Closed Captioning 248

Driving Transmitters from Other Plug-

ins ... 248

Entry Point ... 248

tmModule Functions ������������������������� 249

tmModule Structures ������������������������� 252

tmStdParms .. 252

tmPluginInfo ... 253

tmInstance .. 254

tmAudioMode...................................... 255

tmVideoMode 256

tmPlaybackClock................................. 257

tmPushVideo .. 259

Suites �� 259

Playmod Audio Suite 259

Host-Based, or Plug-in Based Audio? �260

GetNextAudioBuffer ���������������������������260

Transmit Invocation Suite 260

10. Video Filters
What’s New �� 261

What’s New in Premiere Pro CS5? . 261

What’s New in Premiere Pro CS3? . 261

Getting Started ����������������������������������� 262

Resources ... 262

A Filter PiPL Example �������������������������262

Entry Point ... 265

Selector Table �������������������������������������� 265

Selector Descriptions ������������������������� 266

fsInitSpec ... 266

fsHasSetupDialog 266

fsSetup .. 266

fsExecute .. 267

fsDisposeData 267

fsCanHandlePAR 267

fsGetPixelFormatsSupported 268

fsCacheOnLoad 268

Return Codes ��������������������������������������� 268

VideoRecord �� 268

VFilterCallBackProcPtr 270

sizeFlags ... 271

Additional Details ������������������������������� 271

Fields and Field Processing 271

Frame Caching 271

Creating Effect Presets 272

Effect Badging 272

Premiere Elements and Effect

Thumbnail Previews 273

11. GPU Effects & Transitions
System Requirements 274

CUDA, OpenCL, Metal, or OpenGL? 274

What’s New in Premiere Pro 12�0? ��� 275

What’s New in Premiere Pro CC 2015�4?

 �� 275

What’s New in Premiere Pro CC 2014?

 �� 275

Getting Started ����������������������������������� 275

Setting up the Sample Projects 275

Querying for Parameters and other

Attributes of a Effect or Transition

 ... 276

Lifetime of a GPU Effect / Transition

 ... 276

Fallback to Software Rendering 276

OpenGL Interoperability 277

Entry Point ... 277

PrGPUFilter Function Table ��������������� 278

Function Descriptions ����������������������� 278

CreateInstance 278

DisposeInstance 279

GetFrameDependencies 279

PreCompute .. 279

Render .. 279

Return Codes ��������������������������������������� 280

Structure Descriptions ���������������������� 280

PrGPUFilterInfo 280

PrGPUFilterInstance 281

PrGPUFilterRenderParams 281

PrGPUFilterFrameDependency 282

PrGPU SDK Macros ����������������������������� 283

External Dependencies 284

Include Paths .. 284

Defines .. 284

Header Files .. 285

Top Level Kernel Files 285

Preprocessing as a Separate Step . 285

Declaring Kernels 285

Declaring Device Functions 286

Other Macros and Functions 287

Suites �� 287

GPU Device Suite 287

Opaque Effect Data Suite 287

instanceID ��288

12. AE Transition Extensions
PF_TransitionSuite ����������������������������� 289

Getting Started ����������������������������������� 289

Setting up the Sample Project 289

Compatibility Considerations......... 290

13. Device Controllers
What’s New? �� 291

What’s New in CC October 2013 291

What’s New in CC July 2013? 291

What’s New in CC? 292

cmdShuttle .. 306

cmdInsertEdit 306

cmdGetDeviceDisplayName........... 307

cmdSetDropness................................. 307

cmdSetDeviceHandler 307

14. Control Surfaces
Calling Sequence 308

Getting Started 309

What’s New in CS6.0.1? 292

Getting Started ����������������������������������� 292

Resources ... 292

Entry Point ... 293

Capture ��� 293

Timecode ... 293

Preroll Time ... 293

Timecode Offset 293

Edit to Tape �� 294

Audio Channels 294

Record ... 294

Preview Edits .. 295

Abort on Dropped Frames 295

Closed Captioning 295

Selector Table �������������������������������������� 295

Selector Descriptions ������������������������� 296

dsInit .. 296

dsRestart .. 296

dsSetup .. 296

dsExecute... 297

dsCleanup.. 297

dsQuiet ... 297

dsHasOptions 297

Return Codes ��������������������������������������� 297

DeviceRec ��� 298

Commands ��� 302

cmdGetFeatures 303

cmdStatus .. 304

cmdNewMode 304

cmdGoto .. 305

cmdLocate ... 306

Introduction • 16Adobe Premiere Pro SDK Guide

Welcome to the Adobe® Premiere® Pro CC Software Development Kit! This is a living document,
and is constantly being updated and edited. The latest release of the SDK is available at:
https://www.adobe.io/apis/creativecloud/premierepro.html.

If you have questions about the APIs described in this document, or about integration with
Premiere Pro, your question may already be answered on the Premiere Pro SDK forum at:
https://forums.adobe.com/community/premiere/sdk.

What Premiere Plug-ins Do

Premiere APIs provide access to many points of the video editing pipeline. Recording from an
external device, device control, media import and export, video effects and transitions, playback
to external hardware, and integration with control surfaces can all be performed by plug-ins.

SDK Audience

The Premiere Pro Software Development Kit enables developers to create plug-ins for Premiere
Pro, After Effects, Audition, Media Encoder, Character Animator, and Premiere Elements.

The required development environment for the Premiere Pro SDK for Windows is Microsoft
Visual Studio 2015 Update 3 on Windows 7 or Windows 10 64-bit. When setting up Visual
Studio you may need to adjust some installation settings to install the components for compiling
64-bit plug-ins. On macOS, the minimum environment is Xcode 7.3 on macOS 10.12 or later.

The SDK includes sample projects for these development environments. On Windows, projects
can often be updated to more current versions of Microsoft Visual Studio by simply opening
the project and approving the automatic conversion. The sample code is written in C++. Other
compilers and programming languages are not supported. We cannot assist with platform API
programming issues not central to Premiere Pro plug-in programming.

1Introduction

Introduction • 17Adobe Premiere Pro SDK Guide

If this is your first time developing a Premiere plug-in, you can skip the What’s New section.
If you are developing on macOS, see a quickstart video on building a plug-in using a similar SDK
(on macOS): adobe.ly/2sjMDwM
and then go directly to Where Do I Start?

What’s New?

What’s New in 13.0

The only significant change to Premiere Pro’s C++ APIs for 13.0 is the addition of color-
space specifiers to the Importer API. The ColorProfileRec structure is deprecated; instead,
Importers will describe supported colorspaces (in response to imGetIndColorSpace) using a
ColorSpaceRec.

What’s New in 12.0

Effects and Transitions

GPU effects and transitions built using this SDK are now compatible with After Effects 15.0 and
later. The sample GPU effect projects have been updated so that they load in both Premiere Pro
and After Effects.

The newly provided PrGPU SDK macros and device functions allow you to write kernels that will
compile on multiple GPU compute languages - OpenCL, CUDA, and Metal.

Multiple effects and transitions can now be implemented in a single plug-in binary, by defining
multiple entry points in software at runtime. The new method for registering entry points will be
a replacement for the PiPL resource, and is currently only supported in Premiere Pro. The sample
effects and transitions demonstrate this new method, while the PiPL resource remains, for back-
wards-compatibility in PPro, and compatibility with AE.

Sequence Info Suite is now at version 5, adding the new call
GetImmersiveVideoVRConfiguration(), which returns the VR video settings of the
specified sequence.

New selector available for Export Info Suite: kExportInfo_SourceBitrate. This returns
the source’s bitrate in kbps, and is not available for all source types. exParamType can now be
of type exParamType_thumbnail. A new flag exParamFlag_verticalAlignment
can now be set so that property name and value controls are displayed vertically rather than side-
by-side.

Introduction • 18Adobe Premiere Pro SDK Guide

What’s New in CC 2017.1

Importers

Importers that support captions can make use of the mayHaveCaptions flag in imFileIn­
foRec8, for better performance. Also, a imImageInfoRec is now added to imInitiateAsync­
ClosedCaptionScanRec, just for the width and height parameters.

Exporters

Exporters can advertise whether they support color profile embedding. There are also APIs to set
color profile in the exporter, and a flag that controls whether profile is to be embedded. The color
profile is passed to an exporter via exDoExportRec, for it to embed in the output media ac-
cording to format standards. This is currently used for exports from After Effects through Media
Encoder.

Transmit

New 10-bit and 12-bit RGB HLG formats have been added for expanded HDR support.

In App Info Suite, a new identifier has been added for Character Animator, which now supports
transmit plug-ins.

VR Video Support

The Playmod Immersive Video Suite can be used to query whether or not ambisonics monitoring
is on or not, in the VR Video Settings.

What’s New in CC 2017

VR Video Support

Transmit plug-ins can have the VR perspective in the desktop Monitor driven by the Head-
Mounted Display, so when the person with the Head-Mounted Display looks in a different direc-
tion, the desktop Monitor shows that same perspective. To do this, the transmit plug-in can use
the new Playmod Immersive Video Suite to indicate that it supports tracking.

Introduction • 19Adobe Premiere Pro SDK Guide

Once Premiere sees the transmitter supports tracking, when the user activates the VR viewer, the
new menu item, “Track Head-Mounted Display” will become active, and can be toggled to begin
tracking. The transmitter should call NotifyDirection() as frequently it wants with up-
dated info. Premiere will pick up the new position on the next frame draw.

For importers, imFileInfoRec8 has now been expanded so that if an importer detects that a
clip contains VR video, it can inform Premiere.

New Sample Projects

This SDK includes a new render path for the ProcAmp sample for Metal. This sample requires
macOS 10.11.4 and later.

We’ve also added a sample GPU effect called Vignette, donated by Bart Walczak. This effect
has OpenCL, CUDA, and software render paths. Software rendering in Premiere Pro includes
8-bit/32-bit RGB/YUV software render paths. Software rendering in After Effects includes 8-bit
and 32-bit smart rendering.

And lastly, the Control Surface sample is now cross-platform.

New Panel/Scripting Capabilities

Scripting, the processing underlying HTML5 panels, is consistently being improved upon. In this
release, we’ve added scripting functions to add/modify effect keyframes. See the sample panel
code on GitHub:
https://github.com/Adobe-CEP/Samples/tree/master/PProPanel
In particular, see the function onPlayWithKeyframes() in jsx/Premiere.jsx

Miscellaneous

In Video Segment Render Suite, new versions of various calls have been added with an additional
boolean value that allows renders to skip rendering of non-intrinsic effects.

Introduction • 20Adobe Premiere Pro SDK Guide

What’s New in CC 2015.4

Effects and Transitions

GPU-accelerated rendering using Metal is now supported for third-party effects and transi-
tions. PrGPUDeviceFramework_Metal has been added as one of the enum values in
PrGPUDeviceFramework.

What’s New in CC 2015.3?

Control Surfaces

New suites have been added for Control Surfaces to support the Lumetri Color panel. Most con-
trols are supported, including the color wheels, but not including the Curves controls.

There is now a shared location for Control Surface plug-ins. On Mac:
/Library/Application Support/Adobe/Common/Plug-ins/ControlSurface, and
~/Library/Application Support/Adobe/Common/Plug-ins/ControlSurface
On Win:
C:\Program Files\Adobe\Common\Plug-ins\ControlSurface

Importers

Video duration can now be reported as a 64-bit integer, using the new imFileInfoRec8.
vidDurationInFrames, to support longer file lengths. There is also a new suite function,
SetImporterInstanceStreamFileCount(), for importers to specify how many files
they open.

Exporters

New flags can be set in exExporterInfoRec.flags, to restrict an exporter from being used
in a way that doesn’t make sense. Now, an exporter can specify that video-only export is not sup-
ported. Also, an exporter can turn off the Publish tab if it chooses to.

Effects

Source settings effects should use the updated Source Settings suite with new
SetIsSourceSettingsEffect() function. They should make this call during PF_Cmd_

Introduction • 21Adobe Premiere Pro SDK Guide

GLOBAL_SETUP. This function was added to handle the case when the effect is applied to proxy
video.

Misc

Using the Sequence Info Suite, a new call has been added, GetProxyFlag(), for a plug-in to
know whether the proxy mode is on or off.

What’s New in CC 2015.1?

Transmit

Native support for 12-bit Dolby PQ pixel formats, with Rec. 709, P3, and Rec. 2020 primaries,
have been added.

What’s New in CC 2015?

After Effects-Style Transitions

AE-style Transitions can now get and set transition start and end percentages. The user can
change the start and end parameters in the Effect Controls panel. To allow a plugin to be in-
formed of changes to these values, there are two new functions in the PF TransitionSuite:
RegisterTransitionStartParam() and RegisterTransitionEndParam(),
which register these parameters with the plug-in as float parameters. Once registered, the plug-in
will receive PF_Cmd_USER_CHANGED_PARAM when these params change, as well as when the
transition is first applied, so the plug-in can initialize them to the desired value.

AE-style Transitions can now retrieve GPU frames from arbitrary locations in the under-
lying clips. There is a new PrGPUDependency_TransitionInputFrame, and
PrGPUFilterFrameDependency has a new member to specify whether frames from the
incoming or outgoing clips are needed.

Source Settings = Effect + Importer

Source Settings for clips can now be implemented using effects that are tied to importers. This
has the advantage of providing settings in the Effect Controls panel, rather than in a modal dialog.
Editors can adjust Source Settings for multiple clips this way. These effects are used for the DPX
source settings, CinemaDNG, etc.

Introduction • 22Adobe Premiere Pro SDK Guide

To implement this, an importer should set imImportInfoRec.hasSourceSettingsEf­
fect to true. Then in imFileInfoRec8, it should set sourceSettingsMatchName to
the match name of the effect to be used for the Source Settings.

On the effects side, a new PF Source Settings Suite has been added to PrSDKAESupport.h, for
effects using the After Effects API. This is how an effect registers a function to handle the Source
Settings command.

A source settings effect is used primarily for the parameter UI and management. A source set-
tings effect doesn’t provide the actual frames. In fact, the effect isn’t even called with PF_Cmd_
RENDER. The frames come directly from the importer, which provides frames based on the
settings as passed to the importer via prefs data.

When a clip is first imported, the effect is called with PF_Cmd_SEQUENCE_SETUP. It should
call PerformSourceSettingsCommand() in the Source Settings Suite, to initialize the
prefs. This causes the importer to get called with imPerformSourceSettingsCommand, where it can
read the file and set the default prefs. param1 of that function is imFileAccessRec8*, and
param2 is imSourceSettingsCommandRec*.

When the source settings effect parameters are changed, the effect gets called with PF_Cmd_
TRANSLATE_PARAMS_TO_PREFS. The function signature is:

PF_Err TranslateParamsToPrefs(
 PF_InData* in_data,
 PF_OutData* out_data,
 PF_ParamDef* params[],
 PF_TranslateParamsToPrefsExtra *extra)

With the new prefs, the importer will be sent imOpenFile8, imGetInfo8, imGetIndPixelFormat,
imGetPreferredFrameSize, imGetSourceVideo, etc.

imSourceSettingsCommandRec and PF Source Settings Suite allow the effect to com-
municate directly with the importer, so that it can initialize its parameters properly, based on the
source media. In the DPX source settings effect, for example, in PF_Cmd_SEQUENCE_SETUP,
it calls PF_SourceSettingsSuite->PerformSourceSettingsCommand(), which
calls through to the importer with the selector imPerformSourceSettingsCommand. Here, the
importer opens the media, looks at the header and initializes the prefs based on the media. For
DPX, the initial parameters and default prefs are based on the bit depth of the video. These default
prefs are passed back to the effect, which sets the initial param values and stashes a copy of them
in sequence_data to use again for future calls to PF_Cmd_SEQUENCE_RESETUP.

Introduction • 23Adobe Premiere Pro SDK Guide

Importers

For any importers that are using imClipFrameDescriptorRec, note that the structure defi-
nition has changed. Any importers that use this in both CC 2014 and CC 2015 or later will need
to do a runtime check before accessing the members of this structure.

Exporters

Exporters can now use standard parameters for audio channel configura-
tion, as used with the built-in QuickTime exporter. The new exporter parameters
ADBEAudioChannelConfigurationGroup and ADBEAudioChannelConfiguration super-
cede ADBEAudioNumChannels. The new Export Audio Param Suite can be used to query/
change the audio channel configuration. The Sequence Audio Suite is now at version 2, revising
MakeAudioRenderer() to take PrAudioChannelLabel* as a parameter.

Transmitters

Transmitters can get a few new bits of information to aid with A/V sync. In the Playmod Audio
Suite, the new function GetNextAudioBuffer2() returns the actual time the rendered buf-
fer is from. Also, in tmPlaybackClock, the new members inAudioOffset and inVid­
eoOffset have been added to specify the offset chosen by the user in the preferences. The host
accounts for these offsets automatically by sending frames early, but if a transmitter is manually
trying to line up audio and video times, it can use this to know how far apart from each other
they are supposed to be.

Miscellaneous

Legacy callbacks bottlenecks->ConvolvePtr() and IndexMapPtr() have had their
parameter types updated to fix a bug. Any plug-ins that use these in both previous versions and
CC 2015 will need to do a runtime check before calling this function.

Starting in CC 2015, we now provide installer hints for Mac. You’ll find a new plist file “com.
Adobe.Premiere Pro.paths.plist” at “/Library/Preferences”. This contains hints for your Mac in-
staller to know where to install plug-ins, and is similar to the registry entries we have been pro-
viding on Win.

New Sample Projects

This SDK includes updated GPU effect and transition samples that demonstrate GPU render-
ing. Thanks to Rama Hoetzlein from nVidia for the CUDA render path provided for the SDK_
CrossDissolve sample!

Introduction • 24Adobe Premiere Pro SDK Guide

A barebones Control Surface sample is now provided, too.

What’s New in CC 2014 (8.2)?

Importers now have more visibility into the player’s intent on a given async request, since the
render context info is now passed in imSourceVideoRec.inRenderContext. Async
importers can implement aiSelectEfficientRenderTime to specify if a frame request would be more
efficient at another frame time, for example at I-frame boundaries. The Video Segment Render
Suite has been updated to version 4, adding new calls that include imRenderContext as a
parameter.

What’s New in CC 2014 (8.1)?

Importers that support growing files now get a hint if the host knows the file has stopped growing:
imFileInfoRec8.ignoreGrowing.

Exporters can now get the list of source pixel formats used by the clips in a sequence
that is being smart rendered. GetExportSourceInfo(..., kExportInfo_
SourcePixelFormat, ...) provides this information.

What’s New in CC 2014 (8.0.1)?

Importers can fill in imImageInfoRec.codecDescription to provide a string that will be
displayed for clips in the Video Codec column of the Project panel.

What’s New in CC 2014?

Importers can now choose the format they are rendering in, which allows importers to change
pixel formats and quality based on criteria like enabled hardware and other source settings, such
as HDR. To handle the negotiation, implement imSelectClipFrameDescriptor.

imSourceVideoRec now includes a quality attribute. PPix Cache Suite is
now at version 6, adding AddFrameToCacheWithColorProfile2() and
GetFrameFromCacheWithColorProfile2(), which are the same as the ones added in
version 5 with the addition of a PrRenderQuality parameter.

imFileInfoRec8.highMemUsage is no longer supported.

A new recorder return code was added, rmRequiresRoyaltyContent. Return this from
recmod_Startup8 or recmod_StartRecord, if the codec used is unlicensed.

Introduction • 25Adobe Premiere Pro SDK Guide

OpenCL rendering now also uses the half-precision 16-bit floating point pixel format for ren-
dering. GPU effects and transitions that support OpenCL should implement both 16f and 32f
rendering.

A new plug-in API has been introduced for hardware Control Surfaces. This is the API that al-
lows support for EUCON and Mackie devices to control audio mixing and basic transport con-
trols. The API supports two-way communication with Premiere Pro, so that hardware faders, VU
meters, etc are in sync with the application.

Premiere Pro is now localized in Russian and Brazilian Portugese.

What’s New in CC October 2013?

We’ve extended the After Effects API to support native transitions in Premiere Pro.

For device controllers, the new command cmdSetDeviceHandler was added. This command tells
the device controller which panel is using the device controller -- either the Capture panel, or
Export to Tape panel.

For importers, imInitiateAsyncClosedCaptionScanRec now provides extra fields for
the importer to fill in the estimated duration of all the captions. This is useful for certain cases
where the embedded captions contain many frames of empty data.

We added version 2 of the Export File Suite to resolve a mismatch in seek modes.

What’s New in CC July 2013?

The only significant additions made in the July 2013 update to version CC are in the device con-
troller API.

What’s New in CC?

New Edit to Tape Panel

You can think of this as the Export to Tape equivalent of the Capture panel for capturing, which
provides a video preview and various settings in the PPro UI. Among the benefits are more seam-
less integration, a more familiar UI for users, integrated device presets, and some new capabilities
like adding Bars and Tone / Black Video / Universal Counting Leader to the start of your layoff to
tape. To use this new feature, read more about what’s new in the device controller API.

Introduction • 26Adobe Premiere Pro SDK Guide

New GPU Extensions for Effects and Transitions

New GPU Extensions to existing APIs allow effects and transitions to access video frames in GPU
memory, when using the Mercury Playback Engine in a GPU-accelerated mode. See the new
GPU Effects and Transitions chapter for more information.

Closed Captioning Support in Importer and Exporter APIs

The importer and exporter APIs have been extended to support closed captioning embedded in
media. Note that Premiere Pro can also import and export captions in a sidecar file (e.g. .mcc,
.scc, or .xml) alongside any media file, regardless of the media file format.

Miscellaneous Improvements

• A new pixel format for native 10-bit RGB support - PrPixelFormat_RGB_444_10u, as
well as PrPixelFormat_UYVY_422_32f_* formats

• VST 3 support allows many more audio plug-ins to run in Premiere Pro
• Windows installer improvements, by adding new registry values for preset and settings loca-

tions.
• Get the current build number via the App Info Suite
• Importers can now support audio beyond basic mono, stereo, and 5.1, without implementing

multiple streams, and importers can return varying pixel formats depending on the clip set-
tings. Read more about what’s new for importers.

• Exporters can get the number of audio channels in the source, and check if the user has
checked “Use Previews” in the Export Settings dialog. They can also move an existing settings
parameter to a different location. Read more about what’s new for exporters.

• The Sequence Info Suite can retrieve the field type, zero point, and whether or not the time-
code is drop-frame

• New flags to the transition API as a hint to optimize rendering when a transition only has an
input on one side

• The Video Segment Suite provides access to a new property: Effect_ClipName

Premiere Pro is now localized in Chinese.

What’s New in CS6.0.x?

CS6.0.2 adds more support for growing files in importers. A transmitter can now label its audio
channels for the Audio Output Mapping preferences.

Introduction • 27Adobe Premiere Pro SDK Guide

CS6.0.1 gives device controllers a way to get the number of frames dropped during an insert edit,
to abort an Export to Tape if desired. This method is already superceded by the new Edit to Tape
panel functionality in CC.

What’s New in CS6?

Transmit API

We are introducing the Transmit API as the preferred means for external hardware monitoring.
This new API provides vastly simplified support for monitoring on external hardware. Transmit
plug-ins offer more flexible usage, since they are not tied to the sequence Editing Mode, which
cannot be changed once a sequence has been edited. Transmitters can be specified by the user
in Preferences > Playback. Other plug-ins such as importers and effects with settings preview
dialogs can send video out to the active transmitter, opening up new possibilities for hardware
monitoring. For this first release, transmit plug-ins are supported in Premiere Pro, Encore, and
Prelude. Not far down the road, we intend to stop supporting the player API, but we will con-
tinue to support it for CS6. See the transmitters chapter for more details.

Exporter Enhancements

Exporters can now use “push” model compression. This can simplify export code and improve
performance. The “pull” model is still supported, and required for legacy versions and Encore.

We’ve added the Export Standard Param Suite, which provides the standard parameters used in
many built-in exporters. This can greatly reduce the amount of code needed to manage standard
parameters for a typical exporter, and guarantee consistency with built-in exporters.

Exporters can now set tooltip strings for parameters. Multiple exporters are now supported in a
single plug-in. And the Maximum Render Precision flag is now queried from the exporter, rather
than being handled without the exporter’s knowledge.

Exporters can now set events (error, warning, or info) for a specific encode in progress in the
Adobe Media Encoder render queue, using the new Exporter Utility Suite. These events are dis-
played in the application UI, and are also added to the AME encoding log.

Make sure your presets go in the right location in the new AME Preset Browser.

Read additional details of what’s new in the exporters chapter.

Introduction • 28Adobe Premiere Pro SDK Guide

Stereoscopic Video Pipeline

We are also adding API support for stereoscopic video throughout the render pipeline. This af-
fects importers, effects built using the After Effects API, and exporters.

Other Changes

Importers can now support growing files in Premiere Pro. We have also added a way for import-
ers to specify all their source files to be copied by Collect Files in After Effects. There is also a new
function in the Media Accelerator Suite to validate the content state of a media accelerator. See
additional details of what’s new in the importers chapter.

For Recorders, the parent window handle is now properly passed in during recmod_ShowOptions
when a recorder should display its modal setup dialog.

For Players, pmPlayerSettings has a new member, mPrimaryDisplayFullScreen,
which indicates whether or not the player should display fullscreen.

Device controllers have a new callback, DroppedFrameProc, to provide the feature to abort
and Export to Tape if frames are dropped.

New video segment properties were added: kVideoSegmentProperty_Media_
ClipScaleToFramePolicy, kVideoSegmentProperty_Adjustment_
AdjustmentMediaIsOpaque, kVideoSegmentProperty_Adjustment_
OperatorsHash, kVideoSegmentProperty_Media_InPointMediaTimeAsTicks,
kVideoSegmentProperty_Media_OutPointMediaTimeAsTicks,
kVideoSegmentProperty_Clip_TrackItemStartAsTicks, kVid­
eoSegmentProperty_Clip_TrackItemEndAsTicks, kVideoSegment­
Property_Clip_EffectiveTrackItemStartAsTicks, and kVideoSegment­
Property_Clip_EffectiveTrackItemEndAsTicks.

The Memory Manager Suite is now at version 4. AdjustReservedMemorySize provides
a way to adjust the reserved memory size relative to the current size. This may be easier for the
plug-in, rather than maintaining the absolute memory usage and updating it using the older
ReserveMemory call.

MPEG-4 pixel formats and full-range Rec. 709 MPEG-2 and MPEG-4 formats have now been
added for native support in the render pipeline.

Introduction • 29Adobe Premiere Pro SDK Guide

What’s New in CS5.5?

Importers can now support color management, when running in After Effects. Now, even non-
synthetic importers can explicitly provide peak audio data. And a new return value allows an im-
porter to specify that it is dependent on a library that needs to be activated. See additional details
of what’s new in the importers chapter.

Players can now support closed captioning. See additional details of what’s new in the players
chapter.

Exporters now have a call to request a rendered frame and then conform it to a specific pixel for-
mat. See additional details of what’s new in the exporters chapter.

We have opened up a new Export Controller API that can drive any exporter to output a file in
any format and perform custom post-processing operations. Developers wanting to integrate
Premiere Pro with an asset management system will want to use this API instead of the exporter
API. See the export controllers chapter for more details.

A new pair of pixel formats was added to natively support full-range Rec. 601 4:2:0 YUV pla-
nar video, both progressive and interlaced: PrPixelFormat_YUV_420_MPEG2_FRAME_
PICTURE_PLANAR_8u_601_FullRange and PrPixelFormat_YUV_420_MPEG2_
FIELD_PICTURE_PLANAR_8u_601_FullRange.

The Video Segment Suite now provides a new call to retrieve a segment node
for a requested time. There are also a few new properties for media nodes:
StreamIsContinuousTime, ColorProfileName, ColorProfileData, and
ScanlineOffsetToImproveVerticalCentering.

The Sequence Info Suite now provides a call to get the sequence frame rate, which may be useful
for effects.

The Image Processing Suite has a new call to set the aspect ratio flag of a DV frame.

What’s New in CS5?

Importers now have access to the resolution, pixel aspect ratio, timebase, and audio sample rate of
the source clip from a setup dialog. Custom importers can use a new call to update a clip after it
has modified by the user in the setup dialog. Please refer to the Importers chapter for more info
on what’s new.

Recorders can now provide audio metering during preview and capture. Read more about what’s
new in the Recorders chapter.

Introduction • 30Adobe Premiere Pro SDK Guide

Exporters and players can automatically take advantage of GPU acceleration, if available on the
end-user’s system. Each project now has a setting for the renderer that the user can choose in the
project settings dialog. When renders occur through the Sequence Render Suite or the Playmod
Render Suite, they now go through the renderer chosen for the current project. This allows third-
party exporters and players to use the built-in GPU acceleration available in the new Mercury
Playback Engine.

Exporters and players can now handle any pixel format, with the new Image Processing Suite.
Exporters and players that parse segments and perform their own rendering can now call the host
for subtree rendering. See the Video Segment Render Suite for details.

If you provide an installer for an exporter, note that custom presets created in Premiere Pro are
now visible in AME and vice-versa.

Encore CS5

3rd-party exporters can now be used to transcode assets to MPEG-2 or Blu-ray compliant files.
Please refer to the Guidelines for Exporters in Encore for instructions on how to set up your ex-
porter so that Encore can use it for transcoding.

Mac 64-Bit and Cocoa

It is invalid to unload any bundle that uses Cocoa because of restrictions in the Objective-C run-
time which do not support unregistering classes. If a plugin uses Cocoa, it must call CFRetain on
its own bundle, otherwise it will cause a crash when the application is closing and tries to unload
the plug-ins.

What’s New in CS4?

New Renderer API and Custom Pixel Formats

The new renderer API provides a way to take over and accelerate rendering of segments. Just as a
player can choose which segments to accelerate, so a renderer can choose which segments to ac-
celerate. Renderers may accelerate any segment, in any sequence, in any project.

Renderers also provide a way to add completely custom pixel formats to the render pipeline.
Supporting a custom pixel format in an importer, a renderer, and an exporter is the new way to
implement smart rendering, by passing custom compressed data from input to output.

Introduction • 31Adobe Premiere Pro SDK Guide

Sequence Preview Formats

Sequence preview file formats are now defined by Sequence encoder preset files. Without any
presets installed, you will not be able to create a new sequence using your custom editing mode.

Separate Processes During Export

When choosing export settings, the settings UI is displayed by Premiere Pro. When the user
confirms the settings, the clip or sequence is passed to Media Encoder. From Media Encoder,
frames from the clip or sequence can be retrieved and rendered without further participation
from Premiere Pro. For a clip export, Media Encoder uses any installed importers to get source
frames. For sequence export, Media Encoder uses a process called PProHeadless, to import and
render frames to be exported.

Since there are so many processes involved during export, it is important that plug-ins be acces-
sible to all processes, by being installed in the common plug-ins folder. PProHeadless Plugin
Loading.log provides information on the PProHeadless process. PProHeadless is also used when
the user creates a dynamic link to a .prproj that is not opened in Premiere Pro.

XMP metadata

There are built-in XMP metadata handlers for known filetypes. These handlers write and read
metadata to and from the file, without going through the importer. imSetTimeInfo8 is no longer
called, since this is set by the XMP handler for that filetype.

More Pixel Format Flexibility

Effects, transitions, and exporters no longer need to support 8-bit RGB at a minimum. So, for
example, an effect can be written to process floating point YUV only. If necessary, Premiere will
make an intermediate conversion so that the effect will receive the pixel format it supports.

Legacy API

Legacy API features, such as selectors and callbacks that are superceded by new ones, are depre-
cated, but are supported, unless indicated.

Where Do I Start?

Read about the sample projects. Decide which one is closest to the functionality you want to
provide. Build the plug-in into the shared plug-ins folder. Launch Premiere Pro with the debug-

Introduction • 32Adobe Premiere Pro SDK Guide

ger attached, and set breakpoints at the plug-in’s entry point to see all communication between
Premiere Pro and the plug-in. The documentation is intended as a reference with detailed expla-
nation where appropriate, but studying the interaction between Premiere Pro and plug-ins is the
best way to understand it.

Write plug-ins by modifying sample plug-in source code. This will greatly simplify your efforts,
and make it easier for us to help you. Feel free to explore and experiment with the API on your
own once you’re familiar with it, but please, resist the temptation to start from scratch; you’ll only
force yourself to repeat other developers’ mistakes, including our own.

If you run into behavior that seems wrong, see if you can reproduce the behavior using one of the
unmodified sample projects. This can save you a lot of time, if you can determine whether the bug
behavior was introduced by your modifications, or was already there to begin with.

Document Overview

This introduction information is common to all the plug-in types. All developers should read this
chapter, and browse through chapters two and three before diving too deep into plug-in develop-
ment.

Chapter 2 is a short chapter that describes the Premiere Pro-specific resources used by plug-ins,
including the Plug-in Property List (PiPL).

Chapter 3, Universals, documents concepts, data types, and structures used throughout the APIs.
It also describes suites and functions used by more than one type of plug-in.

Chapter 4 introduces Media Abstraction, used by hardware integrators and software developers to
integrate with Premiere and accelerate specific workflows.

The remainder of the document describes specific plug-in types.

This document is designed to be read non-linearly. You can browse through the topics from the
bookmarks that appear in the left-hand panel in Acrobat, or the right-hand panel in the Preview
application on macOS. A simple search for a well-chosen keyword will also turn up much infor-
mation on any given topic.

Documentation Conventions

Functions, structure names and general C/C++ code are in Courier;
MyStruct.member and MyFunction()
Underlined text in light blue is hyperlinked.
Premiere selectors are italicized; imGetPrefs.

Introduction • 33Adobe Premiere Pro SDK Guide

Getting Support and Providing Feedback

Please read relevant sections of this document and view the included sample code before request-
ing assistance. Please direct questions regarding installation, configuration, or use of Adobe prod-
ucts to Adobe Technical Support.

Having a solid understanding of digital video concepts is vital to developing plug-ins. This docu-
mentation assumes you understand basic video topics such as resolution, frame rates, field inter-
lacing, pixel aspect ratio, bit depth, timecode, compression, color spaces, etc. You must also un-
derstand how your plug-in will fit into a user’s workflow in Premiere Pro. If you aren’t yet familiar
with Premiere Pro or video editing concepts, we recommend the Adobe Premiere Pro Classroom
in a Book.

To report a bug or submit a feature request for Premiere Pro, please visit:
http://www.adobe.com/products/wishform.html
Since this form can be used to submit bugs and features for all Adobe products, make sure you
have the right product selected.

We encourage you to use the Premiere Pro SDK forum to ask questions on the API and general
integration. For development questions that you’d rather keep confidential, you may contact API
Engineering directly. Your feedback can improve the API and SDK to streamline future develop-
ment.

Premiere Pro Plug-in Types

Importers Import video and audio media into Premiere. Synthetic importers, a
subset, dynamically synthesize media without creating an actual file on
disk. Custom importers, dynamically synthesize media to disk.

Recorders Records from a (usually hardware) source to disk. If necessary, pro-
vides a plug-in-defined settings dialog. Displays the video overlay in
the preview area of the Capture panel. Any audio preview should be
played directly be the recorder. The captured file is passed to Premiere
after capture by its file path. The recorder can optionally provide the
timecode of the captured file to Premiere Pro.

Export Controllers Can drive any exporter to generate a file in any format and perform
custom post-processing operations. Developers wanting to integrate
Premiere Pro with an asset management system will want to use this
API instead of the exporter API.

Exporters Allows the user to output media to disk.
Transmitters Sends video, audio, and closed captioning to any external device dur-

ing playback and editing.

Introduction • 34Adobe Premiere Pro SDK Guide

Video Filters We strongly recommend using the After Effects SDK to develop effects
plug-ins. Most of the effects included in Premiere Pro are After Effects
plug-ins. Process a series of video frames with parameters that can be
animated over time.

Video Transitions Process two video sources into a single destination over time. This API
is based on the After Effects API, with certain functions to enable tran-
sition functionality in Premiere Pro.

Device Controllers Control an external device (video tape recorder, camera, etc.) during
Capture and Edit To Tape.

Control Surfaces Interface with a hardware control surface to support audio mixing, ba-
sic transport controls, and the Lumetri Color panel. The API supports
two-way communication with Premiere Pro, so that motorized hard-
ware faders, VU meters, etc can be in sync with the application.

Other supported plug-in standards
Adobe After Effects
API

Premiere Pro supports a portion of the AE API. The After Effects SDK
is not included in the Premiere Pro SDK. The last chapter in the After
Effects SDK Guide.pdf, included in the After Effects SDK, contains
information on known differences with how Premiere Pro supports the
AE API.

VST Starting in CC, Premiere supports version 3 of the VST specification
for audio effects. In CS6.x and previous versions, support was limited
to version 2.4.

ASIO An ASIO driver is often provided in addition to a transmit plug-in, to
provide audio output during editing, playback, and Export To Tape.
Prior to CS6, an ASIO driver was required to support audio input for
voiceover recording in the audio mixer. On macOS, a Core Audio
component may be provided rather than an ASIO driver.

Core Audio macOS only. May be provided instead of an ASIO driver.

Plug-in Support Across Adobe Video and Audio Applications

This chart shows which third-party plug-ins are supported by the various Video and Audio ap-
plications.

Premiere
Pro

After
Effects

Media
Encoder

Audition Character
Animator

Prelude

After Effects AEGPs X
After Effects effects X X
After Effects transitions X
ASIO X X X X
Control Surfaces X X

Introduction • 35Adobe Premiere Pro SDK Guide

Premiere
Pro

After
Effects

Media
Encoder

Audition Character
Animator

Prelude

CoreAudio X X X X
Premiere device controllers X
Premiere export controllers X
Premiere exporters X X X X
Premiere importers X X X X X
Premiere recorders X
Premiere transmitters X X X X
Premiere video filters X
QuickTime codecs X X X X X
Transitions X
VfW codecs X X X X X
VST audio effects X X

Encore can use third-party exporters to transcode assets to MPEG-2 or Blu-ray compliant files.
Please refer to the Guidelines for Exporters in Encore for instructions on how to set up your ex-
porter so that Encore can use it for transcoding.

Premiere Elements Plug-in Support

Premiere Elements uses the same core libraries for plug-in support that Premiere Pro does, al-
though Premiere Elements is 32-bit, whereas Premiere Pro is 64-bit starting with CS5.

Premiere Elements version Equivalent Premiere Pro API version
12 CS6
11 CS5.5
10 CS5.5
9 CS5
8 CS4

It’s always important to test the plug-in fully in each application before advertising compatibility.
Check out the Guidelines for Exporters in Premiere Elements for instructions on how to set up
your exporter to be used in Premiere Elements.

What Exactly Is a Premiere Plug-in?

Premiere plug-ins contain a single entry point of a type specific to each API. Plug-ins are DLLs on
Windows, and Carbon or Cocoa Bundles on macOS. Plug-ins in the \Plug-ins\[language] folder,
and any of its subfolders, will be loaded at launch. Plug-ins can have private resources. Only one

Introduction • 36Adobe Premiere Pro SDK Guide

plug-in per file is parsed, unlike After Effects and Photoshop plug-ins, which can contain multiple
entry points.

Sample Projects

Descriptions

Name Description
SDK File Importer This importer supports .sdk media files. To use the importer, choose File

> Import, and select an .sdk file. Such files may be created using the SDK
Exporter.

It supports uncompressed 8-bit RGB with or without alpha, and packed
10-bit YUV (v410). It supports mono, stereo, and 5.1 audio at arbitrary
sample rates and 32-bit float. It supports trimming using the Project
Manager, Properties and Data Rate Analysis, Unicode filenames, the
avoidAudioConform flag, and can read video frames asynchronously. It
also features a test harness for multistream audio, which can be turned
on by uncommenting the MULTISTREAM_AUDIO_TESTING define
in the header.

Synth Import This synthetic importer generates 8-bit YUV and RGB, video only. To use
it, choose File > New > SDK Synthetic Importer. When the clip is created,
it demonstrates a sample settings dialog, which can be displayed again
by double-clicking the clip in the Project Panel or Timeline Panel. Every
time the settings dialog is displayed, it creates new footage in memory. It
creates ten seconds of footage at 24 fps. The video consists of horizontal
lines of random colors. No file is created on disk - for an example of that,
see the Custom Importer.

SDK Custom Import This custom importer creates a clip similar to the Synth Import sample,
but generates it to disk, rather than memory. To use it, choose File > New
> SDK Custom Importer. Or, import an existing .sdkc clip from the File
> Import dialog. On Windows, newly generated files with .sdkc file ex-
tensions are created in C:\Windows\Temp\. On macOS, they are created
on the Desktop.

After the sample settings dialog, it optionally displays a background
frame from the timeline (useful for titlers). The generated footage is
between 2 and 30 frames at 24 fps, with a random resolution between
32 and 720 pixels wide and between 32 and 480 high, at DV NTSC pixel
aspect ratio.

Introduction • 37Adobe Premiere Pro SDK Guide

Record This recorder pretends to capture .sdk files. To select it, choose Project >
Project Settings > Capture > Capture Format: SDK Record. To simulate
a capture, there must be a valid .sdk file at C:\premiere.sdk, and the SDK
File Importer must also be installed. When the record button is pressed,
a capture is simulated, and when capture is finished, the file at C:\pre-
miere.sdk is copied to the file specified in the Save Captured File dialog,
and automatically imported into the project.

It demonstrates a simple implementation of two capture options buttons,
audio capture settings directly in the Project Settings > Capture panel,
Unicode filenames, and changing the capture format mid-stream.

ExportController Adds a new menu item to File > Export > SDK Export Controller. When
selected, it displays a simple message box on Windows, takes the DV
NTSC widescreen preset, and exports a file to C:\Windows\Temp on
Windows, or to the Desktop on macOS.

SDK Exporter This exporter writes .sdk files. To use it, choose File > Export > Media,
and in the Export Settings choose File Type: SDK File.

It supports uncompressed 8-bit RGB with or without alpha, and packed
10-bit YUV (v410). It supports mono, stereo, and 5.1 audio at arbitrary
sample rates and 32-bit float. It demonstrates custom parameters, in-
cluding a custom settings button. It also writes marker data to an .html
file with the same filename.

To write files with v410 compression using 8-bit RGB sources, this
sample uses routines to convert the 8-bit RGB data to 32-bit RGB, then
to 32-bit YUV, and finally to v410. These same routines may be adapted
for transitions, filters, and other plug-in types.

Transmitter The sample transmit plug-in does not output to any hardware, but can
be used to step through interactions between the host and plug-in in the
debugger. To use it, go the the Preferences > Playback, and choose the
SDK Transmitter as the Audio Device, and as a Video Device.

This transmit plug-in provides the basic structure, separating concepts of
plug-in and instance. For video, it declares support for any pixel format
and resolution. For audio, it declares support for 2 channels. It also
declares a small latency value for demonstrative purposes. On Windows,
there is some basic debug logging.

It does not actually provide it’s own clock at this time, but on playback it
simply pretends to step forward a frame with every frame received. This
may result in some bug behavior such as playing back at speeds faster or
slower than normal, depending on how fast the host can push frames.

Introduction • 38Adobe Premiere Pro SDK Guide

Simple Video Filter This video filter is found in the SDK folder of the Video Effects in the
Effects Control panel. It has a color picker parameter and slider param-
eter in the Effects Control panel, and modifies the source pixels based on
the parameters.

If the slider is zero, the filter adds the RGB values in the color picker
to the RGB values of each pixel and preserves the alpha. If the slider is
non-zero, the filter uses the callback to get the current frame. Using the
callback for this purpose is purely for demonstration purposes. The cur-
rent frame is passed in through (*theData)->source and using the
callback to get the current frame in a real filter is only wasting time!

Field-Aware Video
Filter

This video filter is found in the SDK folder of the Video Effects in the
Effects Control panel. It supports 8-bit YUV and RGB. It has a color
picker parameter, a slider parameter, and an unused angle parameter in
the Effects Control panel, and modifies the source pixels based on the pa-
rameters and current field rendering.

If the field rendering is upper fields first, it will blend the upper fields
of the upper half of the image with the color parameter by the percent-
age specified by the slider parameter. If the field rendering is lower fields
first, it will blend the lower fields of the lower half of the image. If the
field rendering is off, it will blend every other row of pixels. The alpha
is preserved. It demonstrates use of PPix Suite and Pixel Format Suite.
When the setup button is pressed, it displays a message box on Windows,
and an alert on macOS.

SDK_ProcAmp This GPU-accelerated effect demonstrates a simple ProcAmp effect using
the After Effects API with the Premiere Pro GPU extensions. The effect
is found in the SDK folder of the Video Effects in the Effects Control
panel. It supports OpenCL and Metal acceleration. This sample requires
macOS 10.11.4 and later.

Vignette This effect creates a vignette on video using the After Effects API with the
Premiere Pro GPU extensions. has OpenCL, CUDA, and software render
paths. Software rendering in Premiere Pro includes 8-bit/32-bit RGB/
YUV software render paths. Software rendering in After Effects includes
8-bit and 32-bit smart rendering. Thanks to Bart Walczak for donating
this sample.

SDK_CrossDissolve This GPU-accelerated transition demonstrates a simple cross dissolve
transition using the After Effects API with the transition extensions.
The transition is found in the SDK folder of the Video Transitions in the
Effects Control panel. It supports OpenCL and CUDA acceleration.

Introduction • 39Adobe Premiere Pro SDK Guide

Device This device controller pretends to control a hardware device. To select
it, choose Edit > Preferences > Device Control > Devices: SDK Device
Control. It reports status in the status area of the Capture panel, and a
simulated timecode location in response to the transport controls.

Since the device controller and recorder sample plug-ins both only simu-
late hardware, they will return different timecode values to the app. You
can set the Capture panel to only display device controller timecode by
going to Preferences > Capture, and check “Use device control timecode”

When the device control Options button is pressed or Export To Tape is
selected, it displays a message box on Windows, and an alert on macOS.
It demonstrates a sample error message when using the Step Back button
at time zero.

ControlSurface Currently Win-only. You should see the plug-in in the PPro UI in
Preferences > Control Surface, when you hit the Add button, as one of
the options in the Device Class drop-down next to Mackie and EUCON
(currently shows as “SDK Control Surface Sample”). Just a starting point
for you to add your functionality.

How To Build the SDK Sample Projects

The required development environment is described in the SDK Audience section.

See a quickstart video on building an effect using a similar SDK (on macOS):
adobe.ly/2sjMDwM

We’ve combined the sample projects into a single master project, stored in the Examples folder of
the SDK. For macOS it is BuildAll.xcodeproj; for Windows, it is _BuildAll.sln.

You’ll need to specify some settings so that the plug-ins are built into a folder where they will be
loaded by the application you are developing for.

We recommend plug-ins be built into the following folder for macOS:
/Library/Application Support/Adobe/Common/Plug-ins/[version]/MediaCore/

version is locked at 7.0 for all CC versions, or CSx for earlier versions.
For example: /Library/Application Support/Adobe/Common/Plug-ins/7.0/MediaCore/
or: /Library/Application Support/Adobe/Common/Plug-ins/CS6/MediaCore/

and the following path for Windows:
[Program Files]\Adobe\Common\Plug-ins\[version]\MediaCore\
for example: C:\Program Files\Adobe\Common\Plug-ins\7.0\MediaCore\

Introduction • 40Adobe Premiere Pro SDK Guide

or: C:\Program Files\Adobe\Common\Plug-ins\CS6\MediaCore\

Note that this Windows path is only recommended for development purposes. Windows install-
ers should follow the guidelines here.

In Xcode, set the build location for the project in File > Project Settings. Press the Advanced but-
ton. Under Build Location choose Custom, select Absolute, and set the Products path.

In Visual Studio, for convenience, we have set the Output File for all sample projects to use the
base path set by the environment variable PREMSDKBUILDPATH. You’ll need to set this as a
user environment variable for your system, and shown in the screenshot below.

1) On Windows 7, right-click My Computer > Properties, and in the left sidebar choose Advanced
System Settings.
2) In the dialog that appears, hit the Environment Variables button.
3) In the User variables, create a new variable named PREMSDKBUILDPATH, with the path as
described above. (e.g. “C:\Program Files\Adobe\Common\Plug-ins\[version]\MediaCore\”).
4) Log out of Windows, and log back in so that the variable will be set.

When compiling the plug-ins, if you see a link error such as:

Introduction • 41Adobe Premiere Pro SDK Guide

“Cannot open file “[MediaCore plug-ins path]\plugin.prm”, make sure to launch Visual Studio
in administrator mode. In your Visual Studio installation, right-click devenv.exe, Properties >
Compatibility > Privilege Level, click “Run this program as an administrator”.

It’s not recommended to copy plug-ins into the plug-in folder after you’ve built them, because that
won’t allow you to debug the plug-ins while the host application is running.

Debugging Plug-ins

Once you’ve got the plug-in building directly into the plug-ins folder as explained above, here’s
how to specify Premiere Pro as the application to run during debug sessions:

On Windows:
1) In the Visual Studio solution, in the Solution Explorer panel, choose the project you want to
debug
2) Right-click it and choose Set as StartUp Project
3) Right-click it again and choose Properties
4) In Configuration Properties > Debugging > Command, provide the path to the executable file
of the host application the plug-ins will be running in (this may be Premiere Pro or After Effects)
5) From there you can either hit the Play button, or you can launch the application and later at
any point choose Debug > Attach to Process...

On macOS:
1) In Xcode, in the Project Navigator, choose the xcodeproj you want to debug
2) Choose Product > Scheme > Edit Scheme...
3) Under Run, in the Info tab, for Executable, choose the host application the plug-ins will be
running in (this may be Premiere Pro or After Effects)
4) From there you can either hit the Play button to build and run the current scheme, or you can
launch the application and later at any point choose Debug > Attach to Process.

Another way to do this in Visual Studio is by placing a line of code:
_asm int 3;
or DebugBreak();
You will then receive the Microsoft error reporting message, but if you hit the Debug button you
will enable Just-In-Time Debugging and can attach to the process.

Introduction • 42Adobe Premiere Pro SDK Guide

Load ‘Em Up!

Plug-in Caching

On its first launch, Premiere Pro loads all the plug-ins, reads the PiPL resource, and sends any
startup selectors to determine the plug-ins’ capabilities. To speed up future application launches,
it saves some of these capabilities in what we call the plug-in cache (the registry on Windows, a
Property List file on macOS).

The next time the application is launched, the cached data is used wherever possible, rather than
loading all the plug-ins on startup. Using this changed data will make the application launch
faster, but for a small set of plug-ins that need to be initialized every time, it may be undesirable.
These include plug-ins that need to get run-time information that might change in between app
launches (i.e. installed codec lists), and plug-ins that check for hardware and need to be able to
fail. So we give your plug-in control final say over whether or not it is reloaded each time.

By default, importers, recorders, and exporters are not cached. Exporters can be cached by setting
exExporterInfoRec.isCacheable to non-zero during exSelStartup. Importers and re-
corders can be cached by returning *IsCacheable instead of *NoError (e.g. for importers,
imIsCacheable instead of imNoError) on the startup selector.

By default, legacy video filters and device controllers are cached by default. To specify that legacy
video filters must be reloaded each time, rather than cached, Premiere filters should respond to
fsCacheOnLoad.

Resolving Plug-in Loading Problems

There are various tools to help in the development process.

On Windows only, you can force Premiere to reload all the plug-ins by holding down shift on
startup. The plug-in cache on macOS may be deleted manually from the user folder, at
~/Library/Preferences/com.Adobe.Premiere Pro [version].plist.

For plug-in loading issues, you may first check one of the plug-in loading logs.
On Windows:
[user folder]\AppData\Roaming\Adobe\Premiere Pro\[version num­
ber]\Plugin Loading.log
On macOS, this is:
~/Library/Application Support/Adobe/Premiere Pro/[version num­
ber]/Plugin Loading.log

Introduction • 43Adobe Premiere Pro SDK Guide

Your plug-in will be listed by path and filename, and the log will contain details on what hap-
pened during the plug-in loading process. Starting in CC 2017, it now logs any error codes
returned from an effect on PF_Cmd_GLOBAL_SETUP.

If the log says a plug-in has been marked as Ignore, the most common culprit is a library de-
pendency that could not be loaded. If your plug-in uses some image processing or proprietary
code library, is it installed on the system, and in the right place? On Windows, a tool such as
Dependency Walker (depends.exe) is helpful to check a plug-in’s dependencies.

Library Linkage

On Windows, we strongly recommend dynamically linking to libraries, rather than static linking.
In Visual Studio, the runtime library linkage setting is in C/C++ > Code Generation > Runtime
Library. We ask developers to compile with the /MD flag (or /MDd for debug builds), and not
with the /MT flag. Failure to do so can contribute to the problem where the Premiere Pro process
can run out of fiber-local storage slots, and subsequent plug-ins fail to load.

No Shortcuts

The Premiere Pro plug-in loader does not follow Windows shortcuts. Although it does follow
 macOS symbolic links, we recommend against using symbolic links in the plug-ins folder, since
the plug-in loader checks the timestamp of the symbolic link rather than the timestamp of the
plug-in pointed to.

Explanation: If you use a symbolic link and the plug-in fails to load once (for example, if the
plug-in pointed to isn’t there) it will be marked to ignore when Premiere launches. Even if the
plug-in is restored to the proper location, the plug-in loader will check the modification time of
the symbolic link, rather than the plug-in pointed to, and continue to ignore the plug-in until the
modification date of the symbolic link is updated. So plug-ins should be placed directly in a plug-
ins folder or subfolder.

Plug-in Installation

Plug-ins must have an installer. This simplifies installation by the user, provides more compact
distribution, and ensures all the pieces are installed correctly. Create a container folder for your
plug-in(s) to minimize user confusion. Don’t unintentionally overwrite existing plug-ins, or
replace newer versions. The installer should find the default installation directories as described
below. It is also appreciated when an installer allows the user to specify an alternate directory.

Plug-ins should be installed in the common plug-in location. Supported Premiere and After
Effects plug-ins installed here will be loaded by Premiere Pro, After Effects, Audition, and Media

Introduction • 44Adobe Premiere Pro SDK Guide

Encoder. Other plug-in types, such as QuickTime and VfW codecs should be installed at the
operating system level.

Windows

Starting in CC, each version of Premiere Pro will create a unique registry key that provide loca-
tions of folders of interest for third-party installations for that version. For example, here are the
registry values for CC 2015.3:

Key: HKEY_LOCAL_MACHINE/Software/Adobe/Premiere Pro/10.0/
Value name: CommonPluginInstallPath
Value data: C:\Program Files\Adobe\Common\Plug-ins\7.0\MediaCore\ (or whatever the proper
MediaCore plug-ins folder is; note that this is the same as what the After Effects installer provides
for a corresponding registry key)

Starting in CC 2015.3, control surface plug-ins should be installed here:
/Library/Application Support/Adobe/Common/Plug-ins/ControlSurface/

For sequence presets:
Value name: SequencePresetsPath
Value data: [Adobe Premiere Pro installation path]\Settings\SequencePresets\

For sequence preview presets:
Value name: SequencePreviewPresetsPath
Value data: [Adobe Premiere Pro installation path]\Settings\EncoderPresets\SequencePreview\

For exporter presets:
Value name: CommonExporterPresetsPath
Value data: [User folder]\AppData\Roaming\Adobe\Common\AME\7.0\Presets\

Effects presets:
Value name: PluginInstallPath
Value data: [Adobe Premiere Pro installation path]\Adobe Premiere Pro CC\Plug-ins\Common
Third-party installers can start from this path, and then modify the string to build the path to the
language-specific effect presets.

Prior to CC, the only path given in the registry was the common plug-in path for the most recent-
ly installed version of Premiere Pro:
HKEY_LOCAL_MACHINE/Software/Adobe/Premiere Pro/CurrentVersion
Value name: Plug-InsDir
Value data: REG_SZ containing the full path of the plug-in folder
As an example:
C:\Program Files\Adobe\Common\Plug-ins\CS6\MediaCore\

Introduction • 45Adobe Premiere Pro SDK Guide

The best way to locate other preset folders was to start from the root path for Premiere Pro in the
registry at
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\App Paths\
Adobe Premiere Pro.exe. Then, just add the proper subdirectories as described in the macOS sec-
tion.

macOS

Starting in CC 2015, we now provide installer hints for Mac. You’ll find a new plist file “com.
Adobe.Premiere Pro.paths.plist” at “/Library/Preferences”. This contains hints for your Mac in-
staller to know where to install plug-ins, and is similar to the registry entries we have been pro-
viding on Win.

The common plug-in location is at:
/Library/Application Support/Adobe/Common/Plug-ins/[version]/MediaCore/

Starting in CC 2015.3, control surface plug-ins should be installed here:
/Library/Application Support/Adobe/Common/Plug-ins/ControlSurface/

Following OS X Code Signing guidelines, plug-ins should be installed in this separate shared
location rather than in the application bundle.

For sequence presets:
/Settings/SequencePresets/[Your specific folder]/
Sequence preview presets:
/Settings/EncoderPresets/SequencePreview/[Your editing mode GUID]/
Encoder presets:
/MediaIO/systempresets/[Your exporter folder]/
Effects presets:
/Plug-ins/[language subdirectory]/Effect Presets/ (see Localization for the list of language codes)
Editing modes:
/Settings/Editing Modes/

Plug-in Naming Conventions

On Windows, Premiere Pro plug-ins must have the file extension “.prm”. On macOS, they have
the file extension “.bundle”. Other supported plug-in standards use their conventional file exten-
sions: “.aex” for After Effects plug-ins, “.dll” for VST plug-ins.

While it is not required for your plug-in to load, naming your plug-ins using the plug-in type as a
prefix (e.g. ImporterSDK, FilterSDK, etc.) will help reduce user confusion.

Introduction • 46Adobe Premiere Pro SDK Guide

Plug-in Blacklisting

Have a plug-in that works fine in one CS application, but has problems in another CS application?
Now, specific plug-ins can be blocked from being loaded by MediaCore in specific applications,
using blacklists. Note that this does not work for After Effects plug-ins loaded by AE, although it
does work for AE plug-ins loaded in Premiere Pro.

In the plug-ins folder, look for the appropriate blacklist file, and append the the filename of the
plug-in to the file (e.g. BadPlugin, not BadPlugin.prm). If the file doesn’t exist, create it first.
“Blacklist.txt” contains names of plug-ins blacklisted from all apps. Plug-ins can be blocked from
loading in specific apps by including them in “Blacklist Adobe Premiere Pro.txt”, or “Blacklist
After Effects.txt”, etc.

Creating Sequence Presets

Not to be confused with encoder presets or sequence preview encoder presets, sequence presets
are the successor to project presets. They contain the video, audio, timecode, and track layout
information used when creating a new sequence.

If you wish to add Sequence Presets for the New Sequence dialog, save the settings with a descrip-
tive name and comment. Emulate our settings files. Install the presets as described in the section,
“Plug-in Installation”.

Application-level Preferences

For Windows 7 restricted user accounts, the only place that code has guaranteed write access to a
folder is inside the user documents folder and its subfolders.
..\Users\[user name]\AppData\Roaming\Adobe\Premiere Pro\[version]\
This means that you cannot save data or documents in the application folder. There is currently
no plug-in level API for storing preferences in the application prefs folder. Plug-ins can create
their own preferences file in the user’s Premiere prefs directory like so:

HRESULT herr = SHGetKnownFolderPath(FOLDERID_RoamingAppData,
 0, NULL, preferencesPath);
strcat(preferencesPath,
 “\\Adobe\\Premiere Pro\\[version]\\MyPlugin.preferences”);

On MacOS:
NSSearchPathForDirectoriesInDomains(NSApplicationSupportDirector
y,NSLocalDomainMask,…)

This should get you started getting the Application Support folder which you can add onto to cre-
ate something like:

Introduction • 47Adobe Premiere Pro SDK Guide

/Library/Application Support/Adobe/Premiere Pro/[version]/
MyPlugin.preferences

Dog Ears

Premiere Pro’s built-in player has a mode to display statistics, historically known as “dog ears”,
which can be useful in debugging and tuning performance of importers, effects, transitions, and
transmitters. The statistics include frames per second, frames dropped during playback, pixel
format rendered, render size, and field type being rendered.

You can bring up the debug console in Premiere Pro. You can do this via Ctrl/Cmd-F12. To en-
able the dog ears, type this:

debug.set EnableDogEars=true

to disable, use this:

debug.set EnableDogEars=false

If the enter keystroke seems to go to the wrong panel, this is an intermittent panel focus problem.
Click the Tools or Info panel before typing in the Console panel, and the enter key will be pro-
cessed properly.

Once enabled, the player displays the statistics as black text on a partially transparent back-
ground. This allows you to still see the underlying video (to some extent) and yet also read the
text. When you turn off dog ears, the setting may not take effect until you switch or reopen your
current sequence.

Note if you are developing a transmitter, displaying dog ears will result in duplicate calls to
PushVideo for the same frame. This happens because the player routinely updates the dog
ears on a timer even when the frame hasn’t changed for updated stats. As of CS6, this triggers a
PushVideo to active transmitters as a side effect.

Localization

The language used by Premiere Pro is decided by the user during installation. Plug-ins can deter-
mine this setting from the following locations:
On Windows, in the registry at HKEY_CURRENT_USER\Software\Adobe\Premiere Pro\[ver-
sion], in a key named “Language”.
On macOS, at ~/Library/Preferences/com.Adobe.Premiere Pro.[version].plist, at Root >
Language.
The string will be set to one of the values below by Premiere Pro at startup.

Introduction • 48Adobe Premiere Pro SDK Guide

Language String
English en_US
French fr_FR
German de_DE
Italian it_IT
Japanese ja_JP
Spanish es_ES
Korean ko_KR
Chinese (new in CC) zh_CN
Russian (new in CC 2014) ru_RU
Brazilian Portugese (new in CC 2014) pt_BR

Changing the string will not change the language Premiere Pro runs in, unless you override the
application language by placing a file in the following location:

Windows: [App installation folder]\lang-override.txt
macOS: [App Installation folder]/[Premiere Pro application package]/Contents/lang-override.txt

Best Practices

When a plug-in receives a selector it doesn’t recognize, it should always return the code specific to
the plug-in type that means the selector is not supported (i.e. imUnsupported, rmUnsupported,
etc). In this way, new selectors can be added to the API and legacy plug-ins will automatically
answer whether or not they support it.

Structure Alignment

All the sample projects include PrSDKTypes.h. This header sets the proper (single-byte) structure
alignment and specifies the necessary (C-style) external linkage.

Introduction • 49Adobe Premiere Pro SDK Guide

Resources • 50Adobe Premiere Pro SDK Guide

2Resources

There are two types of special resources that are specific to Premiere plug-ins: the PiPL and the
IMPT. This chapter describes these resources, and how certain plug-in types use them.

Plug-In Property Lists (PiPL) Resource

For many plug-in types, Premiere loads a PiPL (Plug-in Property List) resource. The PiPL is
described in a file with a “.r” extension. The complete PiPL syntax is described in PiPL.r. You’ll
notice that PiPLs are really old. A vestige of 68k macOS programming, they spread to Windows.
However, if you develop from the sample projects, you shouldn’t have to do anything to get them
to build properly for Latin languages.

Which Types of Plug-ins Need PiPLs?

Exporters, players, and recorders do not need PiPLs.

Standard importers do not need PiPLs. Synthetic and custom importers use a basic PiPL to
specify their name, and the match name that Premiere uses to identify them. The name appears
in the File > New menu.

Device controllers use a basic PiPL to specify their name and the match name that Premiere uses
to identify them.

Video filters use an extended PiPL to specify their name, the match name that Premiere uses to
identify them, the bin they go in, how they handle pixel aspect ratio, whether or not they have
randomness, and their parameters. For more information on the ANIM_FilterInfo and ANIM_
ParamAtom sections, see the resources section in the Video Filters chapter.

A Basic PiPL Example

#define plugInName “SDK Custom Import”

Resources • 51Adobe Premiere Pro SDK Guide

#define plugInMatchName “SDK Custom Import”

resource ‘PiPL’ (16000) {
{

// The plug-in type
Kind {PrImporter},

// The name as it will appear in a Premiere menu, this can be localized
Name {plugInName},

// The internal name of this plug-in - do not localize this. This is used for both Premiere

and After Effects plug-ins.
AE_Effect_Match_Name {plugInMatchName}

// Transitions and video filters define more PiPL attributes here

}
};

How PiPLs Are Processed By Resource Compilers

On macOS, .r files are processed natively by Xcode, as a Build Phase of type Build Carbon
Resources. This step is already set for the sample projects.

On Windows, .r files are processed with CnvtPiPL.exe, which creates an .rcp file based upon
custom build steps in the project. The .rcp file is then included in the .rc file along with any other
resources the plug-in uses. These custom build steps are already in place in the sample projects.
To view them, open up the sample project in .NET. In the Solution Explorer, right-click the .r
file and choose Properties. In the dialog, choose the Custom Build Step folder. The Command
Line contains the script for executing the CnvtPiPL.exe. Unless you are using a different compiler
than the support compiler, or adding support for Asian languages, you should not need to modify
the custom build steps. This script may also be found as a text file in the SDK at \Examples\
Resources\Win\Custom Build Steps.txt. This text file also describes the additional switches used
for Asian languages.

IMPT Resource

Premiere Pro looks for an IMPT resource to identify a plug-in as an importer. Before Premiere
Pro 1.0, the IMPT resource was also used to declare the file extension supported by an importer.
Since file extensions are now declared during imGetIndFormat, the drawtype four character
code in the IMPT resource is no longer used by Premiere Pro. However, a unique drawtype
fourcc is needed for the importer to function properly in After Effects on macOS. Do not use
0x4D4F6F76. This is already reserved by After Effects.

Resources • 52Adobe Premiere Pro SDK Guide

1000 IMPT DISCARDABLE
BEGIN
 0x12345678 // Put your own unique hexadecimal code here
END

Universals • 53Adobe Premiere Pro SDK Guide

3Universals

This chapter covers topics that are common to more than one type of Premiere plug-in. We start
by discussing fundamental concepts and common data structures. The rest of the chapter dis-
cusses the various function suites that are available to plug-ins.

Time

There are two different representations of time: scale over sampleSize, and ticks.

scale over sampleSize

The first representation of time uses value/scale/sampleSize components, either sepa-
rated, or combined in a TDB_TimeRecord structure. scale over sampleSize defines the
timebase. For example, to represent the NTSC standard of 29.97 frames per second, scale /
sampleSize = 30000 / 1001. To represent the PAL standard of 25 frames per second, 25 / 1.
To represent the 24p standard of 23.976, 23976 / 1000, or 24000 / 1001. To represent most other
timebases, use sampleSize = 1, and scale is the frame rate (e.g. 15, 24, 30 fps, etc). Another
way of thinking about scale and sampleSize is that sampleSize is the duration of a
frame of video, and scale is that duration of a second of video.

value is the time in the timebase given by scale over sampleSize. So, for example, 30
frames with a sampleSize of 1001 have a value of 30030. To convert value to seconds, divide by
scale. To convert value to frames, divide by sampleSize.

Sometimes, as when handling audio-only media, sampleSize refers to a sample of audio, and
sampleSize = 1. In this case, scale is the audio sampling rate (22050, 32000, 44100, 48000
Hz, etc).

Universals • 54Adobe Premiere Pro SDK Guide

PrTime

Most newer areas of the API use a tick-based time value that is stored in a signed 64-bit integer.
Variables that use this new format are of type PrTime. When a frame rate is represented as a
PrTime, the frame rate is the number of ticks in a frame duration.

The current number of ticks per second must be retrieved using the callback in the Time Suite.
This rate is guaranteed to be constant for the duration of the application’s run-time.

Video Frames

Premiere stores each video frame in a PPix structure. A PPixHand is a handle to a PPix. This
structure should not be accessed directly, but manipulated using various suites such as the PPix
Suite, PPix 2 Suite, PPix Creator Suite, and PPix Creator 2 Suite.

Far from being just a boring buffer of RGB data, PPixes can contain a significant amount of
information about a video frame, including: rectangle bounds (width, height), pixel aspect ratio,
pixel format, field dominance, alpha interpretation, color space, gamma encoding, and more.

In the pixel buffer itself, there may be padding between neighboring horizontal rows of pixels. So
when iterating through the pixels in the buffer, don’t assume that the first pixel on the next line is
stored immediately after the last pixel on the current line. Honor the rowbytes, which is a measure
of the size in bytes of a row of pixels, including any extra padding.

Frames are guaranteed to be 16-byte aligned.

Pixel Formats and Color Spaces

As of CC, Premiere supports 69 different pixel formats, not including raw and custom formats.
Why so many? Each pixel format has it’s unique advantages and disadvantages. 8-bit formats
are compact, but lack quality. 32-bit ones are more accurate, but overkill in some situations.
Compressed formats are great for storing raw frames, but bad for effects processing. And so on...
In summary, choose wisely!

What Format Should I Use?

Starting in CS4, plug-ins no longer need to support 8-bit BGRA at a minimum. If required,
Premiere can make intermediate format conversions in the render pipeline, although these inter-
mediate conversions will be avoided if possible. Previously in CS3 and earlier, all plug-ins except
importers needed to support 8-bit per channel BGRA, even if they supported other formats.

Universals • 55Adobe Premiere Pro SDK Guide

When choosing which pixel formats to support, there are different factors to consider, depending
on the plug-in type.

Importers

Importers typically should provide frames in a format closest to the source format. If needed,
Premiere can convert any compressed format to a 8-bit or 32-bit uncompressed format. Keeping
the format compressed as long as possible as it passes through the render pipeline will save
memory and bandwidth.

Starting in Premiere Pro CC 2014, importers can now choose the format they are rendering in.
This allows importers to change pixel formats and quality based on criteria like enabled hardware
and other source settings, such as HDR. To handle the negotiation, implement imSelectClipFra­
meDescriptor.

Effects

Effects should support the uncompressed format(s) that works best with the effect’s pixel process-
ing algorithm. If the algorithm is based on RGB pixel calculations, provide a fast render path
using 8-bit BGRA, and optionally a high-quality render path using 32-bit BGRA. If the algorithm
is Y’UV-based, use the VUYA pixel formats.

Exporters and Transmitters

Exporters and transmitters should request frames in a format closest to the output format. New
in CS5, PrPixelFormat_Any can be used in exporter render requests. Any render func-
tion that takes a list of pixel formats can now be called with just two formats - the desired 4:4:4:4
pixel format, and PrPixelFormat_Any. This allows the host to avoid frame conversions and
decompressions in many very common cases. The best part is that the plug-in doesn’t need to
understand all the possible pixel formats to make use of this. It can use the Image Processing Suite
to copy/convert from any a PPix of any format to a separate memory buffer, which is a copy that
would likely need to be done anyway.

After the request is made, Premiere analyzes the preferred format of all importers and effects that
are used to produce a single rendered frame, as well as the list of requested formats, and chooses
the best format to use on a per-segment basis. If the requestor supports more than one format,
and the importers and effects used for various clips in the sequence support different formats, the
render may use different formats for each segment.

Premiere Pro’s built-in Rec. 601 to 709 color space conversion can be slow. So if the majority of
the sources and effects use the Rec 601 color space, and if the exporter or transmitter can handle
the 601 to 709 conversion quickly on its own, it may be faster to do the color space conversion in
the exporter or transmitter.

Universals • 56Adobe Premiere Pro SDK Guide

Other Considerations

For high-bit depth support, the 32f formats are the recommended route, rather than the 16u
formats. For example, an exporter that supports 10-bit Y’UV should ask for frames in 32f Y’UV
format, and then convert the 32f to 10u.

The ARGB formats can be natively used in the After Effects render pipeline, and are used by
After Effects effect plug-ins that do not specifically support any other pixel format. However, in
Premiere Pro, these ARGB formats will require byte-swapping, and shouldn’t be used.

Byte Order

BGRA, ARGB, and VUYA are written in order of increasing memory address from left to right.
Uncompressed formats have a lower-left origin, meaning the first pixel in the buffer describes the
pixel in the lower-left corner of the image. Compressed formats have format-specific origins. Use
calls in the Image Processing Suite to get details on any format.

8-bit and 16-bit BGRA formats do not contain super whites or super blacks.

The 16-bit formats use channels that go from black at 0 to white at 32768, like After Effects and
Photoshop 16-bit formats.

PrPixelFormat Bits /
Channel

Format /
FourCC

Additional Details

Unpacked, Uncompressed
BGRA_4444_8u 8 RGB
VUYA_4444_8u 8 Y’UV
VUYA_4444_8u_709 8 Y’UV Rec. 709 color space. New in

Premiere Pro 4.1.
BGRA_4444_16u 16 RGB
BGRA_4444_32f 32 RGB
VUYA_4444_32f 32 Y’UV
VUYA_4444_32f_709 32 Y’UV Rec. 709 color space. New in

Premiere Pro 4.1.

Unpacked, Uncompressed, native After Effects support only
ARGB_4444_8u 8 RGB For native After Effects sup-

port. For native Premiere Pro
support, use BGRA.

ARGB_4444_16u 16 RGB
ARGB_4444_32f 32 RGB

Universals • 57Adobe Premiere Pro SDK Guide

PrPixelFormat Bits /
Channel

Format /
FourCC

Additional Details

Unpacked, Uncompressed, with implicit alpha
BGRX_4444_8u 8 RGB Implicitly opaque alpha chan-

nel. The actual data may be
left filled with garbage, which
allows optimized processing
by both the plug-in and host,
with the understanding the
the alpha channel is opaque.
New in Premiere Pro CS5.

VUYX_4444_8u 8 Y’UV
VUYX_4444_8u_709 8 Y’UV
XRGB_4444_8u 8 RGB
BGRX_4444_16u 16 RGB
XRGB_4444_16u 16 RGB
BGRX_4444_32f 32 RGB
VUYX_4444_32f 32 Y’UV
VUYX_4444_32f_709 32 Y’UV
XRGB_4444_32f 32 RGB
BGRP_4444_8u 8 RGB Premultiplied alpha. New in

Premiere Pro CS5.VUYP_4444_8u 8 Y’UV
VUYP_4444_8u_709 8 Y’UV
PRGB_4444_8u 8 RGB
BGRP_4444_16u 16 RGB
PRGB_4444_16u 16 RGB
BGRP_4444_32f 32 RGB
VUYP_4444_32f 32 Y’UV
VUYP_4444_32f_709 32 Y’UV
PRGB_4444_32f 32 RGB

Linear RGB
BGRA_4444_32f_Linear 32 RGB These RGB formats have

a gamma of 1, rather than
the standard 2.2. New in
Premiere Pro CS5.

BGRP_4444_32f_Linear 32 RGB
BGRX_4444_32f_Linear 32 RGB
ARGB_4444_32f_Linear 32 RGB
PRGB_4444_32f_Linear 32 RGB
XRGB_4444_32f_Linear 32 RGB

Packed, Uncompressed formats
RGB_444_10u New in Premiere Pro CC. Full

range 10-bit 444 RGB little-
endian

YUYV_422_8u_601 8 ‘YUY2’ New in Premiere Pro CS4.
YUYV_422_8u_709 8 ‘YUY2’ Rec. 709 color space. New in

Premiere Pro CS4.
UYVY_422_8u_601 8 ‘UYVY’ New in Premiere Pro CS4.

Universals • 58Adobe Premiere Pro SDK Guide

PrPixelFormat Bits /
Channel

Format /
FourCC

Additional Details

UYVY_422_8u_709 8 ‘UYVY’ Rec. 709 color space. New in
Premiere Pro CS4.

V210_422_10u_601 10 ‘v210’ New in Premiere Pro CS4.
V210_422_10u_709 10 ‘v210’ Rec. 709 color space. New in

Premiere Pro CS4.
UYVY_422_32f_601 32 ‘UYVY’ New in Premiere Pro CC.
UYVY_422_32f_709 32 ‘UYVY’ New in Premiere Pro CC.

Compressed Y’UV
NTSCDV25 8 DV25 / ‘dvsd’
PALDV25 8 DV25 / ‘dvsd’
NTSCDV50 8 DV50 / ‘dv50’
PALDV50 8 DV50 / ‘dv50’
NTSCDV100_720p 8 DV100 720p /

‘dvh1’
PALDV100_720p 8 DV100 720p /

‘dvh1’
NTSCDV100_1080i 8 DV100 1080i /

‘dvh1’
PALDV100_1080i 8 DV100 1080i /

‘dvh1’
YUV_420_MPEG2_FRAME_
PICTURE_PLANAR_8u_601

8 Y’UV 4:2:0 /
‘YV12’

Progressive Rec. 601 color
space

YUV_420_MPEG2_FIELD_
PICTURE_PLANAR_8u_601

8 Y’UV 4:2:0 /
‘YV12’

Interlaced Rec. 601 color
space

YUV_420_MPEG2_FRAME_
PICTURE_PLANAR_8u_601_
FullRange

8 Y’UV 4:2:0 /
‘YV12’

New in Premiere Pro CS5.5.
Progressive Rec. 601 color
space, full range Y’UV

YUV_420_MPEG2_FIELD_
PICTURE_PLANAR_8u_601_
FullRange

8 Y’UV 4:2:0 /
‘YV12’

New in Premiere Pro CS5.5.
Interlaced Rec. 601 color
space, full range Y’UV

YUV_420_MPEG2_FRAME_
PICTURE_PLANAR_8u_709

8 Y’UV 4:2:0 /
‘YV12’

Progressive Rec. 709 color
space

YUV_420_MPEG2_FIELD_
PICTURE_PLANAR_8u_709

8 Y’UV 4:2:0 /
‘YV12’

Interlaced Rec. 709 color
space

Universals • 59Adobe Premiere Pro SDK Guide

PrPixelFormat Bits /
Channel

Format /
FourCC

Additional Details

YUV_420_MPEG2_FRAME_
PICTURE_PLANAR_8u_709_
FullRange

8 Y’UV 4:2:0 /
‘YV12’

New in Premiere Pro CS6.
Progressive Rec. 709 color
space, full range Y’UV.
Matricies scaled from 709 by
each component’s excursion
(Y is scaled by 219/255 and
UV scaled by 224/256)

YUV_420_MPEG2_FIELD_
PICTURE_PLANAR_8u_709_
FullRange

8 Y’UV 4:2:0 /
‘YV12’

New in Premiere Pro CS6.
Interlaced Rec. 709 color
space, full range Y’UV

YUV_420_MPEG4_FRAME_
PICTURE_PLANAR_8u_601

8 Y’UV 4:2:0 /
‘YV12’

New in Premiere Pro CS6.
Progressive Rec. 601 color
space

YUV_420_MPEG4_FIELD_
PICTURE_PLANAR_8u_601

8 Y’UV 4:2:0 /
‘YV12’

New in Premiere Pro CS6.
Interlaced Rec. 601 color
space

YUV_420_MPEG4_FRAME_
PICTURE_PLANAR_8u_601_
FullRange

8 Y’UV 4:2:0 /
‘YV12’

New in Premiere Pro CS6.
Progressive Rec. 601 color
space, full range Y’UV

YUV_420_MPEG4_FIELD_
PICTURE_PLANAR_8u_601_
FullRange

8 Y’UV 4:2:0 /
‘YV12’

New in Premiere Pro CS6.
Interlaced Rec. 601 color
space, full range Y’UV

YUV_420_MPEG4_FRAME_
PICTURE_PLANAR_8u_709

8 Y’UV 4:2:0 /
‘YV12’

New in Premiere Pro CS6.
Progressive Rec. 709 color
space

YUV_420_MPEG4_FIELD_
PICTURE_PLANAR_8u_709

8 Y’UV 4:2:0 /
‘YV12’

New in Premiere Pro CS6.
Interlaced Rec. 709 color
space

YUV_420_MPEG4_FRAME_
PICTURE_PLANAR_8u_709_
FullRange

8 Y’UV 4:2:0 /
‘YV12’

New in Premiere Pro CS6.
Progressive Rec. 709 color
space, full range Y’UV.
Matricies scaled from 709 by
each component’s excursion
(Y is scaled by 219/255 and
UV scaled by 224/256)

PrPixelFormat_YUV_420_
MPEG4_FIELD_PICTURE_
PLANAR_8u_709_FullRange

8 Y’UV 4:2:0 /
‘YV12’

New in Premiere Pro CS6.
Interlaced Rec. 709 color
space, full range Y’UV

Miscellaneous

Universals • 60Adobe Premiere Pro SDK Guide

PrPixelFormat Bits /
Channel

Format /
FourCC

Additional Details

Raw ? ? Raw, opaque data, with no
rowbytes or height

Custom Pixel Formats

New in CS4, custom pixel formats are supported. Plug-ins can define a pixel format which can
pass through various aspects of our pipeline, but remain completely opaque to the built-in ren-
derers. Use the macro MAKE_THIRD_PARTY_CUSTOM_PIXEL_FORMAT_FOURCC in the
Pixel Format Suite. Please use a unique name to avoid collisions. The format doesn’t need to be
registered in any sense. They can just be used in the same way the current pixel formats are used,
though in many cases they will be ignored.

The first place the new pixel formats can appear in the render pipeline is at the importer level.
Importers can advertise the availability of these pixel formats during imGetIndPixelFormat, just as
they would for any other format. Note that importers must also support a non-custom pixel for-
mat, for the case where the built-in renderer is used, which would not be prepared to handle an
opaque pixel format added by a third-party. In the importer, use the new CreateCustomPPix
call in the PPix Creator 2 Suite, and specify a custom pixel format and a memory buffer size, and
the call will pass back a PPix of the requested format. These PPixes can then be returned from
an importer, like any other. The memory for the PPix will be allocated by MediaCore, and must
be a flat data structure as they will need to be copied between processes. However, because the
data itself is completely opaque, it can easily be a reference to another pixel buffer, as long as the
reference can be copied. For example, the buffer could be a constant 16 bytes, containing a GUID
which can be used to access a memory buffer by name in another process.

To query for available custom pixel formats from the player, use the
GetNumCustomPixelFormats and GetCustomPixelFormat calls in the Clip Render
Suite. The custom pixel formats will not returned by the regular calls to get the supported frame
formats, mostly to prevent them from being used. The other Clip Render Suite functions will
accept requests for custom pixel formats and will return these custom PPixes like any others.
With the Clip Render Suite, a third-party player can directly access these custom PPixes from a
matched importer.

Smart Rendering

Smart rendering involves passing compressed frames from the importer to the exporter, to bypass
any unnecessary decompression and recompression, which reduces quality and performance.
The way to implement this is by passing custom PPixes between an importer, exporter, and usu-
ally a renderer.

Universals • 61Adobe Premiere Pro SDK Guide

In the rare case of exporting a single clip, using the Clip Render Suite in the exporter to request
custom PPixes from the importer is sufficient. But in the more common case of exporting a se-
quence, a renderer that supports the custom pixel format is required.

When an exporter running in Media Encoder parses the segments in the sequence, it only has
a very high-level view. It sees the entire sequence as a single clip (which is actually a temporary
project file that has been opened using a Dynamic Link to the PProHeadless process), and it
sees any optional cropping or filters as applied effects. So when the exporter parses that simple,
high-level sequence, if there are no effects, it should use the MediaNode’s ClipID with the Clip
Render Suite to get frames directly from the PProHeadless process. In the PProHeadless process,
the renderer can step in and parse the real sequence in all its glory. It can use the Clip Render
Suite to get the frames in the custom pixel format directly from the importer, and then set the
custom PPix as the render result. This custom PPix then is available to the exporter, in a pris-
tine, compressed PPix.

Pixel Aspect Ratio

Pixel Aspect Ratio (PAR) is usually represented as a rational number, with a numerator and a
denominator. Note that several PAR values were changed in CS4 to match broadcast standards.
Here are some examples of pixel aspect ratios:

NTSC DV 0.9091 PAR is (10, 11)
NTSC DV Widescreen 1.2121 PAR is (40, 33)
PAL DV 1.0940 PAR is (768, 702)
PAL DV 1.4587 PAR is (1024, 702)
Square 1.0 PAR is (1,1)

In certain legacy structures, PAR is represented as a single 32-bit integer, such as in recCapIn­
foRec.pixelAspectRatio. This uses a representation where the numerator is bit-shifted
16 to the left, and OR’d with the denominator. For example NTSC DV 0.9091 PAR is (10 <<
16) | 11.

Fields

There are different constants defined for fields. These constants are now largely interchangable in
CS4, since the conflicting constants for the old compiler API have been removed.

Exporters, Players,
Video Segment Suite, etc

Recorders

prFieldsNone kMALFieldsNone
prFieldsUpperFirst kMALFieldsUpperFirst
prFieldsLowerFirst kMALFieldsLowerFirst

Universals • 62Adobe Premiere Pro SDK Guide

Exporters, Players,
Video Segment Suite, etc

Recorders

prFieldsUnknown kMALFieldsUnknown
prFieldsAny kMALFieldsInvalid
prFieldsInvalid

Audio

32-bit Float, Uninterleaved Format

All audio calls to and from Premiere use arrays of buffers of 32-bit floats to pass audio. Audio is
not interleaved, rather separate channels are stored in separate buffers. So the structure for stereo
audio looks like this:

float* audio[2];

where audio[0] is the address of a buffer N samples long, and audio[1] is the address of a
second buffer N samples long. audio[0] contains the left channel, and audio[1] contains
the right channel. N is the number of sample frames in the buffer.

Since Premiere uses 32-bit floats for each audio sample, it can represent values above 0 dB. 0 dB
corresponds to +/- 1.0 in floating point. A floating point sample can be converted to a 16-bit
short integer by multiplying by 32767.0 and casting the result to a short. E.g.:
sample16bit[n] = (short int) (sample32bit[n] * 32767.0)

The plug-in is responsible for converting to and from the 32-bit uninterleaved format when read-
ing a file that uses a different format. There are calls to convert between formats in the Audio
Suite. For symmetry in the int <--> float conversions, we recommend you use the utility functions
provided.

Audio Sample Types

Since 32-bit floats are the only audio format ever passed, there is no option of sample type
or bit depth. However, file formats do use a variety of sample types and bit depths, so
AudioSampleTypes define a variety of possible formats. These formats are used to set mem-
bers in structures passed to Premiere to define the user interface, and do not affect the format of
the audio passed to and from Premiere.

Universals • 63Adobe Premiere Pro SDK Guide

PrAudioSampleType Description
kPrAudioSampleType_8BitInt 8-bit integer
kPrAudioSampleType_8BitTwosInt 8-bit integer, two’s complement
kPrAudioSampleType_16BitInt 16-bit integer
kPrAudioSampleType_24BitInt 24-bit integer
kPrAudioSampleType_32BitInt 32-bit integer
kPrAudioSampleType_32BitFloat 32-bit floating point
kPrAudioSampleType_64BitFloat 64-bit floating point
kPrAudioSampleType_16BitIntBigEndian 16-bit integer, big endian
kPrAudioSampleType_24BitIntBigEndian 24-bit integer, big endian
kPrAudioSampleType_32BitIntBigEndian 32-bit integer, big endian
kPrAudioSampleType_32BitFloatBigEndian 32-bit floating point, big endian
kPrAudioSampleType_Compressed Any non-PCM format
kPrAudioSampleType_Packed Any PCM format with mixed sample

types
kPrAudioSampleType_Other A sample type not in this list
kPrAudioSampleType_Any Any available sample type (used by

exporters)

Audio Sample Frames

A sample frame is a unit of measurement for audio. One audio sample frame describes all chan-
nels of one sample of audio. Each sample is a 32-bit float. Thus, the storage requirement of an
audio sample frame in bytes is equal to 4 * number of channels.

Audio Sample Rate

PrAudioSample is a prInt64

Audio Channel Types

Premiere currently supports four different audio channel types: mono, stereo, 5.1, and max chan-
nel.

Greater than 5.1 channel support was originally added in Premiere Pro 4.0.1, with partial support
for a 16 channel master audio track, only for importing OMFs and playing out to hardware. In
CS6, 16-channel audio export was added. Starting in CC, the audio channel support is increased
to 32 channels.

Universals • 64Adobe Premiere Pro SDK Guide

PrAudioChannelType Description
kPrAudioChannelType_Mono Mono
kPrAudioChannelType_Stereo Stereo. The order of the stereo channels is:

kPrAudioChannelLabel_FrontLeft,
kPrAudioChannelLabel_FrontRight.

kPrAudioChannelType_51 5.1 audio. The order of the 5.1 channels is:
kPrAudioChannelLabel_FrontLeft,
kPrAudioChannelLabel_FrontRight,
kPrAudioChannelLabel_BackLeft,
kPrAudioChannelLabel_BackRight,
kPrAudioChannelLabel_
FrontCenter,
kPrAudioChannelLabel_
LowFrequency

kPrAudioChannelType_MaxChannel New in CC. kMaxAudioChannelCount,
defined as 32 channels as of CC. All chan-
nels use kPrAudioChannelLabel_
Discrete.

Memory Management

Premiere Pro has a media cache in which it stores imported frames, intermediate frames (inter-
mediate stages of a render), fully rendered frames, and audio. This is sized based on a specific
percentage of physical memory, taking into account if multiple Production Premium applications
like After Effects, Encore, etc are also running. PPro manages this cache itself, so as it adds new
items to the cache, it flushes least recently used items.

What Really is a Memory Problem?

Often, users monitoring memory usage are alarmed when they see memory growing to a specific
point during a render or playback. When the memory doesn’t drop right back down after a ren-
der or playback, they might think they have found a memory leak. However, keeping in mind the
function of the Premiere Pro media cache, this behavior is to be expected.

On the other hand, memory contention between plug-ins and the rest of Premiere Pro can lead
to memory problems. If a plug-in allocates a significant amount of memory and the Premiere
Pro media cache has not accounted for it, this means there is less free memory available after the
media cache grows to the predefined size. Even if Premiere Pro does not completely run out of
memory, limited memory can cause memory thrashing as memory is moved around to make
room for video frames, which in turn can cause poor performance.

Universals • 65Adobe Premiere Pro SDK Guide

Solutions for Memory Contention

The best approach to reduce memory contention is to reduce the memory requirements of each
plug-in. However, if the memory requirements of a plug-in are significant, it should also use the
Memory Manager Suite to report any memory usage that would not already be accounted for.
Frames allocated using the PPix Creator Suite are accounted for, but any memory allocated using
the old PPix and Memory functions are not automatically accounted for.

Basic Types and Structures

These types and structures are defined in PrSDKTypes.h and PrSDKStructs.h, and are used
throughout the Premiere API. Premiere defines cross-platform types for convenience when devel-
oping plug-ins for both Windows and Mac OS.

Name Description
prColor An unsigned 32-bit integer that stores an RGB color. This type is

useful for the 8-bpc colors retrieved by the color picker in a video
effect or transition. Color channels are stored as BGRA, in order
of increasing memory address from left to right.

prWnd A Windows HWND or Mac OS NSView*
prParentWnd A Windows HWND or Mac OS NSWindow*
prOffscreen A Windows HDC
prRect A Windows RECT or Mac OS Rect. Use the utility function pr­

SetRect to set the dimensions of a prRect struct. This should
be used because Mac OS Rect members have a different order-
ing than Windows RECT members.

prFloatRect typedef struct {
float left;
float top;
float right;
float bottom;

} prFloatRect;
prRgn A Windows HRGN
prPoint, LongPoint typedef struct {

 csSDK_int32 x;
 csSDK_int32 y;
} prPoint, LongPoint;
LongPoint is deprecated, but still used for a couple of
Bottleneck callbacks

Universals • 66Adobe Premiere Pro SDK Guide

Name Description
prFPoint typedef struct

{
 double x;
 double y;
} prFPoint64;

prPixel (Deprecated)
prPixelAspectRatio (Deprecated)
PPix, *PPixPtr,
**PPixHand

Holds a video frame or field, and contains related attributes such
as pixel aspect ratio and pixel format. Manipulate PPixs using
the PPix Suite, never directly.

TDB_TimeRecord A time database record representing a time value in the context of
a video frame rate.
typedef struct {

TDB_Time value;
TDB_TimeScale scale;
TDB_SampSize sampleSize;

} TDB_TimeRecord;
prBool Can be either kPrTrue or kPrFalse
PrMemoryPtr,
*PrMemoryHandle

A char*

PrTimelineID,
PrClipID

A 32-bit signed integer.

prUTF8Char An 8-bit unsigned integer.
PrSDKString An opaque data type that should be accessed using the new String

Suite.

Universals • 67Adobe Premiere Pro SDK Guide

Name Description
PrParam Used for exporter parameters

struct PrParam
{
 PrParamType mType;
 union
 {
 csSDK_int8 mInt8;
 csSDK_int16 mInt16;
 csSDK_int32 mInt32;
 csSDK_int64 mInt64;
 float mFloat32;
 double mFloat64;
 csSDK_uint8 mBool;
 prFPoint64 mPoint;
 prPluginID mGuid;
 PrMemoryPtr mMemoryPtr;
 };
};

enum PrParamType
{
 kPrParamType_Int8 = 1,
 kPrParamType_Int16,
 kPrParamType_Int32,
 kPrParamType_Int64,
 kPrParamType_Float32,
 kPrParamType_Float64,
 kPrParamType_Bool,
 kPrParamType_Point,
 kPrParamType_Guid,
 kPrParamType_PrMemoryPtr
};

prDateStamp Used in by importers in imFileAttributesRec.cre­
ationDateStamp.
typedef struct
{
 csSDK_int32 day;
 csSDK_int32 month;
 csSDK_int32 year;
 csSDK_int32 hours;
 csSDK_int32 minutes;
 double seconds;
} prDateStamp;

Universals • 68Adobe Premiere Pro SDK Guide

Suites

There are different sets of function suites available to Premiere plug-ins. The SweetPea Suites
are the more modern suites that have been added for most new functionality. The piSuites are
still needed for various functionality that has not all been superceded by the SweetPea Suites.
Whenever possible, use the SweetPea Suites.

There are also function suites more specific to certain plug-in types. The Bottleneck Functions
are useful for transitions and video filters. Other suites available to only one plug-in type are
documented in the appropriate chapter for that plug-in type.

SweetPea Suites

Overview

Suites common to more than one plug-in type are documented in this chapter below. Suites that
are only used by one plug-in type are documented in the chapter on that plug-in type. Below is a
table of all suites available in Premiere Pro:

Suite Name Relevant to Plug-in Type
Accelerated Render Invocation Suite Exporters
App Info Suite All
Application Settings Suite All
Async File Reader Suite Importers
Async Operation Suite All
Audio Suite Importers, Exporters
Captioning Suite Device Controllers, Exporters, Transmitters
Clip Render Suite Exporters
Deferred Processing Suite Importers
Error Suite All except Exporters starting in CS6
Export File Suite Exporters
Export Info Suite Exporters
Export Param Suite Exporters
Export Progress Suite Exporters
Export Standard Param Suite Exporters
Exporter Utility Suite Exporters
File Registration Suite Importers, Transitions, Video Filters
Flash Cue Marker Data Suite Exporters

Universals • 69Adobe Premiere Pro SDK Guide

GPU Device Suite GPU Effects and Transitions
Image Processing Suite All
Importer File Manager Suite Importers
Legacy Suite All
Marker Suite Exporters
Media Accelerator Suite Importers
Memory Manager Suite All
Palette Suite Exporters
Pixel Format Suite All
Playmod Audio Suite Transmitters
Playmod Device Control Suite None (Deprecated)
Playmod Overlay Suite Transmitters
Playmod Render Suite None (Deprecated)
PPix Cache Suite Importers
PPix Creator Suite All
PPix Creator 2 Suite All
PPix Suite All
PPix 2 Suite All
Quality Suite None (Deprecated)
RollCrawl Suite Exporters
Scope Render Suite None (Deprecated)
Sequence Audio Suite Exporters
Sequence Info Suite Importers, Transitions, Video Filters
Sequence Render Suite Exporters
Stock Image Suite None (Deprecated)
String Suite All
Threaded Work Suite All
Time Suite All
Transmit Invocation Suite All
Video Segment Render Suite Exporters
Video Segment Suite Exporters
Window Suite All

Acquiring and Releasing the Suites

All SweetPea suites are accessed through the Utilities Suite. Plug-ins can acquire the suites like so:
 SPBasicSuite *SPBasic = NULL;
 PrSDKPixelFormatSuite *PixelFormatSuite = NULL;

Universals • 70Adobe Premiere Pro SDK Guide

 SPBasic = stdParmsP->piSuites->utilFuncs->getSPBasicSuite();
 if (SPBasic)
 {
 SPBasic->AcquireSuite (kPrSDKPixelFormatSuite,
 kPrSDKPixelFormatSuiteVersion,
 (const void**)&PixelFormatSuite);
 }

Don’t forget to release the suites when finished!
 if (SPBasic && PixelFormatSuite)
 {
 SPBasic->ReleaseSuite (kPrSDKPixelFormatSuite,
 kPrSDKPixelFormatSuiteVersion);
 }

Versioning

Generally from version to version, the changes made to a suite are additive, so it is recommended
to work with the most recent version of a suite if possible. However the latest version of a suite
may not be supported by older versions of Premiere Pro or other host applications. Attempting
to acquire suites that are unsupported by the host application will result in a NULL pointer being
returned from AcquireSuite.

For a plug-in to support multiple versions, it may choose to use a specific older version of the
suite that is supported across those multiple versions. Alternatively, it may check the version of
the host application (using the App Info Suite below), and use the new suites where available, or
the older suites when running in an older version. To acquire a specific older version of a suite,
rather than requesting kPrSDKPixelFormatSuiteVersion in the example above, use a
specific version number instead.

App Info Suite

Useful for plug-i that are shared between different applications, such as After Effects plug-ins,
Premiere exporters, transmitters, and importers, where it may be important to know which host,
version, or language the plug-in is currently running in. Note that this suite is not available to AE
effects running in AE.

This suite provides the host application and version number. For a version such as 6.0.3, it will
return major = 6, minor = 0, and patch = 3. See PrSDKAppInfoSuite.h.

Starting in version 2 of the suite, introduced in CC, the suite has a new selector to retrieve the
build number. SpeedGrade CC supports this suite starting with the July 2013 update.

Universals • 71Adobe Premiere Pro SDK Guide

In version 3, starting in CC 2014, the suite has a new selector to retrieve the language as a NULL-
terminated string identifying the locale used in the host application. For example: “en_US”,
“ja_JP”, “zh_CN”.

Application Settings Suite

New in CS4. This suite provides calls to get the scratch disk folder paths defined in the current
project, where the captured files and preview files are created. It also provides a call to get the
project file path. All paths are passed back as PrSDKStrings. Use the new String Suite to extract
the strings to UTF-8 or UTF-16. See PrSDKApplicationSettingsSuite.h.

Audio Suite

Calls to convert to and from the native audio format used by the Premiere API, at various bit
depths. See PrSDKAudioSuite.h.

Captioning Suite

This suite enables a device controller, exporter, player, or transmitter to get the closed caption-
ing data attached to a sequence. This suite provides the data in either Scenarist (CEA-608, *.scc)
and MacCaption (CEA-708, *.mcc) formats. In the case of CEA-708, it includes not just the text
to display, but it’s also the position information, and background, font, etc. If the transmitter or
player just wants to overlay the captioning data on a frame, it can use the Playmod Overlay Suite
instead.

Clip Render Suite

New in 2.0. Use this suite in the player or renderer, to request source frames directly from the
importer. There are calls to find the supported frame sizes and pixel formats, so that the caller can
make an informed decision about what format to request. Frames can be retrieved synchronously
or asynchronously. Asynchronous requests can be cancelled, for example if the frames have
passed their window of playback. See PrSDKClipRenderSuite.h.

Starting in CS4, this suite includes calls to find any custom pixel format supported by a clip, and
to get frames in those custom pixel formats.

An exporter can use this suite to request frames from the renderer in a compressed pixel format.

Universals • 72Adobe Premiere Pro SDK Guide

Error Suite

Uses a single callback for errors, warnings, and info. This callback will activate a flashing icon in
the lower left-hand corner of the main application window, which when clicked, will open up the
new Events Window containing the error information. See PrSDKErrorSuite.h.

Starting in version 3 of the suite, introduced in CS4, the suite supports UTF-16 strings.

Starting in CS6, exporters should use the Exporter Utility Suite to report events.

File Registration Suite

Used for registering external files (such as textures, logos, etc) that are used by a plug-
in instance but do not appear as footage in the Project Window. Registered files will be
taken into account when trimming or copying a project using the Project Manager. See
PrSDKFileRegistrationSuite.h.

Flash Cue Marker Data Suite

New in CS4. Specific utilities to read Flash cue points. Use in conjunction with the Marker Suite.
See PrSDKFlashCueMarkerDataSuite.h.

Image Processing Suite

New in CS5. Various calls to get information on pixel formats and process frames. The
ScaleConvert() call is the way to copy-convert from a buffer of any supported pixel format
to a separate memory buffer.

In version 2, new in CS5.5, we have added StampDVFrameAspect(), which allows a plug-in
to set the aspect ratio of a DV frame. This was added to supplement ScaleConvert(), which
doesn’t have an aspect ratio parameter.

Marker Suite

New in CS4. New way to read markers of all types. See PrSDKMarkerSuite.h.

Memory Manager Suite

New in Premiere Pro 2.0. Calls to allocate and deallocate memory, and to reserve an amount of
memory so that it is not used by the host. See PrSDKMemoryManagerSuite.h.

Universals • 73Adobe Premiere Pro SDK Guide

In CS6, the suite is now at version 4. AdjustReservedMemorySize provides a way to adjust
the reserved memory size relative to the current size. This may be easier for the plug-in, rather
than maintaining the absolute memory usage and updating it using the older ReserveMemory
call.

ReserveMemory

A plug-in instance can call ReserveMemory as a request to reserve space so that Premiere’s
media cache does not use it. Each time ReserveMemory is called, it updates Premiere Pro on
how many bytes the plug-in instance is currently reserving. The amount specified is absolute,
rather than cumulative. So to release any reserved memory to be made available to Premiere
Pro’s media cache, call it with a size of 0. However, it’s not needed to reset this when exporters
are destructed on exSDK_EndInstance, since the media manager will be deleting all the references
anyways.

ReserveMemory changes the maximum size of Premiere’s Media Cache. So if the cache
size starts at 10 GB, and you reserve 1 GB, then the cache will not grow beyond 9 GB.
ReserveMemory will reserve a different amount of memory, depending on the amount of
available memory in the system, and what other plug-in instances have already reserved. The
media cache needs a minimum amount of memory to play audio, render, etc.

Starting in version 2 of the suite, introduced in CS4, there are calls to allocate/deallocate memory.
This is necessary for exporters, which are not passed the legacy memFuncs.

Pixel Format Suite

See the table of supported pixel formats. GetBlackForPixelFormat returns the minimum
(black) value for a given pixel format. GetWhiteForPixelFormat returns the maximum
(white) value for a given pixel format. Pixel types like YUYV actually contain a group of two pix-
els to specify a color completely, so the data size returned in this case will be 4 bytes (rather than
2). This call does not support MPEG-2 planar formats.

ConvertColorToPixelFormattedData converts an BGRA/ARGB value into a value of a
different pixel type. These functions are not meant to convert entire frames from one colorspace
to another, but may be used to convert a single color value from a filter color picker or transition
border. To convert frames between pixel formats, see the Image Processing Suite.

New in Premiere Pro 4.0.1, MAKE_THIRD_PARTY_CUSTOM_PIXEL_FORMAT_FOURCC()
defines a custom pixel format.

Universals • 74Adobe Premiere Pro SDK Guide

Playmod Overlay Suite

New in CS5.5. A transmitter can ask Premiere Pro to render the overlay for a specific time. As of
CS6, this is only used for closed captioning.

To render the closed captioning overlay, it is not necessary to know anything about the closed
captioning data, whether it is CEA-608 or CEA-708. RenderImage will simply produce a
PPixHand.

The reason why it’s not called Closed Captioning Overlay Suite is because going forward we want
to use it as a general suite that provides all kinds of overlays. That way, when we add more over-
lay types in the future, you don’t need to worry about updating your player each time to mirror
the implementation on your side. In the future, we will likely use this same suite to render static
overlays, such as safe areas. To support those, even if VariesOverTime returns false, you can
call HasVisibleRegions at time 0.

Version 2 in CC 2014 removes CalculateVisibleRegions().

RenderImage

Render the overlay into an optionally provided BGRA PPixHand. RenderImage does not
composite the overlay onto an existing frame, it just renders the overlay into the visible regions.
After rendering the overlay at the player’s display size, you will then need to composite that result
over the frame.

If the user has zoomed the video, it could be wasteful to render a full-sized overlay image and
then scale it. For better performance, the overlay can be rendered at the actual display size. The
inDisplayWidth, inDisplayHeight and inLogicalRegion parameters provide this
extra information needed to optimize for scaling in the UI.

As an example, let’s say the sequence is 720x480 at 0.9091 PAR, and the Sequence Monitor is set
to show the full frame at square PAR. Set inLogicalRegion to (0, 0, 720, 480), and inDis­
playWidth to 654 and inDisplayHeight to 480.

If the Monitor zoom level was set to 50%, then the inLogicalRegion should stay the same,
but display width and height should be set to 327x240. If zoomed to 200%, display width and
height should be set to 1308x960. To pan around (as opposed to showing the entire frame), the
logical region should be adjusted to represent the part of the sequence frame currently being
displayed.

prSuiteError (*RenderImage)(
 PrPlayID inPlayID,
 PrTime inTime,

Universals • 75Adobe Premiere Pro SDK Guide

 const prRect* inLogicalRegion,
 int inDisplayWidth,
 int inDisplayHeight,
 prBool inClearToTransparentBlack,
 PPixHand* ioPPix);

Parameter Description
inLogicalRegion The non-scaled region of the source PPix to

overlay
inDisplayWidth Width and height of PPix, if provided in

ioPPix, scaled to account for Monitor zoom
and PAR

inDisplayHeight

inClearToTransparentBlack If kPrTrue, the frame will first be cleared to
transparent black before render

ioPPix The frame into which to draw the overlay. If
NULL, the host will allocate the PPix. If pro-
vided, the PPix must be BGRA, square pixel
aspect ratio, and sized to inDisplayWidth
& inDisplayHeight.

GetIdentifier

prSuiteError (*GetIdentifier)(
 PrPlayID inPlayID,
 PrTime inTime,
 const prRect* inLogicalRegion,
 int inDisplayWidth,
 int inDisplayHeight,
 prBool inClearToTransparentBlack,
 prPluginID* outIdentifier);

HasVisibleRegions

prSuiteError (*HasVisibleRegions)(
 PrPlayID inPlayID,
 PrTime inTime,
 const prRect* inLogicalRegion,
 int inDisplayWidth,
 int inDisplayHeight,
 prBool* outHasVisibleRegions);

Universals • 76Adobe Premiere Pro SDK Guide

VariesOverTime

prSuiteError (*VariesOverTime)(
 PrPlayID inPlayID,
 prBool* outVariesOverTime);

PPix Cache Suite

Used by an importer, player, or renderer to take advantage of the host application’s PPix cache. See
PrSDKPPixCacheSuite.h.

Starting in version 2 of this suite, introduced in Premiere Pro 4.1, AddFrameToCache and
GetFrameFromCache now have two extra parameters, inPreferences and inPrefer­
encesLength. Now frames are differentiated within the cache, based on the importer prefer-
ences, so when the preferences change, the host will not use the old frame when it gets a frame
request.

Version 4, new in CS5.0.3, adds ExpireNamedPPixFromCache() and
ExpireAllPPixesFromCache(), which allow a plug-in to remove one or all PPixes from
the Media Cache, which can be useful if the media is changing due to being edited in a separate
application.

To expire an individual frames expired using ExpireNamedPPixFromCache(), the identi-
fier must be known. The plug-in may specify an identifier using AddNamedPPixToCache().
If a frame is in the cache with multiple names, and you expire any one of those names, then the
frame will be expired. Alternatively, for rendered frames, the identifier may be retrieved using
GetIdentifierForProduceFrameAsync() in the Video Segment Render Suite.

Clearing the cache will not interfere with any outstanding requests, because each request holds
dependencies on the needed frames.

Version 5, new in CS5.5, adds the new color profile-aware
calls AddFrameToCacheWithColorProfile() and
GetFrameFromCacheWithColorProfile().

Version 6, new in CC 2014, adds AddFrameToCacheWithColorProfile2() and
GetFrameFromCacheWithColorProfile2(), which are the same as the ones added in
version 5 with the addition of a PrRenderQuality parameter.

PPix Creator Suite

Includes callbacks to create and copy PPixs. See also the PPix Creator 2 Suite.

Universals • 77Adobe Premiere Pro SDK Guide

CreatePPix

Creates a new PPix. The advantage of using this callback is that frames allocated are accounted
for in the media cache, and are 16-byte aligned. ppixNew and newPtr don’t allocate memory
in the media cache, or perform any alignment.

prSuiteError (*CreatePPix)(
PPixHand* outPPixHand,
PrPPixBufferAccess inRequestedAccess,
PrPixelFormat inPixelFormat,
const prRect* inBoundingRect);

Parameter Description
PPixHand *outPPixHand The new PPix handle if the cre-

ation was successful. NULL other-
wise.

PrPPixBufferAccess inRequestedAccess Requested pixel access. Read-only
is not allowed (doesn’t make sense).
PrPPixBufferAccess values
are defined in PPix Suite.

PrPixelFormat inPixelFormat The pixel format of this PPix

ClonePPix

Clones an existing PPix. It will ref-count the PPix if only read access is requested and the PPix
to copy from is read-only as well, otherwise it will create a new one and copy.

prSuiteError (*ClonePPix)(
PPixHand inPPixToClone,
PPixHand* outPPixHand,
PrPPixBufferAccess inRequestedAccess);

Parameter Description
PPixHand inPPixToClone The PPix to clone from.
PPixHand *outPPixHand The new PPix handle if the cre-

ation was successful. NULL other-
wise.

PrPPixBufferAccess inRequestedAccess Requested pixel access. Only
read-only is allowed right now.
PrPPixBufferAccess values
are defined in PPix Suite.

Universals • 78Adobe Premiere Pro SDK Guide

PPix Creator 2 Suite

More callbacks to create PPixs, including raw PPixs. Starting in version 2 of this suite, introduced
in Premiere Pro 4.0.1, there is a new CreateCustomPPix call to create a PPix in a custom
pixel format. See PrSDKPPixCreator2Suite.h.

PPix Suite

Callbacks and enums pertaining to PPixs. See also PPix 2 Suite.

PrPPixBufferAccess

Can be either PrPPixBufferAccess_ReadOnly, PrPPixBufferAccess_
WriteOnly, or PrPPixBufferAccess_ReadWrite.

Dispose

This will free this PPix. The PPix is no longer valid after this function is called.

prSuiteError (*Dispose)(
PPixHand inPPixHand);

Parameter Description
PPixHand inPPixHand The PPix handle to dispose.

GetPixels

This will return a pointer to the pixel buffer.

prSuiteError (*GetPixels)(
PPixHand inPPixHand,
PrPPixBufferAccess inRequestedAccess,
char** outPixelAddress);

Parameter Description
PPixHand inPPixHand The PPix handle to operate on.
PrPPixBufferAccess inRequestedAccess Requested pixel access. Most PPixs do

not support write access modes.

Universals • 79Adobe Premiere Pro SDK Guide

Parameter Description
char** outPixelAddress The output pixel buffer address. May be

NULL if the requested pixel access is
not supported.

GetBounds

This will return the bounding rect.

prSuiteError (*GetBounds)(
PPixHand inPPixHand,
prRect* inoutBoundingRect);

Parameter Description
PPixHand inPPixHand The PPix handle to operate on.
prRect* inoutBoundingRect The address of a bounding rect to be filled in.

GetRowBytes

This will return the row bytes of the PPix.

prSuiteError (*GetRowBytes)(
PPixHand inPPixHand,
csSDK_int32* outRowBytes);

Parameter Description
PPixHand inPPixHand The PPix handle to operate on.
csSDK_int32* outRowBytes Returns how many bytes must be added to the

pixel buffer address to get to the next line.

GetPixelAspectRatio

This will return the pixel aspect ratio of this PPix.

prSuiteError (*GetPixelAspectRatio)(
PPixHand inPPixHand,
csSDK_uint32* outPixelAspectRatioNumerator,
csSDK_uint32* outPixelAspectRatioDenominator);

Universals • 80Adobe Premiere Pro SDK Guide

Parameter Description
PPixHand inPPixHand The PPix handle to operate on.
PrPixelFormat* outPixelFormat Returns the pixel format of this PPix

GetUniqueKey

This will return the unique key for this PPix. Returns error if the buffer size is too small (call
GetUniqueKeySize to get the correct size). Returns error if the key is not available. Returns
success if the key data was filled in.

prSuiteError (*GetUniqueKey)(
PPixHand inPPixHand,
unsigned char* inoutKeyBuffer,
size_t inKeyBufferSize);

Parameter Description
PPixHand inPPixHand The PPix handle to operate on.
unsigned char* inoutKeyBuffer Storage for the key to be returned.
size_t inKeyBufferSize Size of buffer

GetUniqueKeySize

This will return the unique key size. This will not change for the entire run of the application.

prSuiteError (*GetUniqueKeySize)(
size_t* outKeyBufferSize);

Parameter Description
size_t* outKeyBufferSize Returns the size of the PPix unique key.

GetRenderTime

This will return the render time for this PPix.

prSuiteError (*GetRenderTime)(
PPixHand inPPixHand,
csSDK_int32* outRenderMilliseconds);

Universals • 81Adobe Premiere Pro SDK Guide

Parameter Description
PPixHand inPPixHand The PPix handle to operate on.
csSDK_int32* outRenderMillisec­
onds

Returns the render time in milliseconds. If the
frame was cached, the time will be zero.

PPix 2 Suite

A call to get the size of a PPix. Starting in version 2 of this suite, introduced in CS4, there is a new
GetYUV420PlanarBuffers call to get buffer offsets and rowbytes of YUV_420_MPEG2
pixel formats. See PrSDKPPix2Suite.h.

RollCrawl Suite

Used by a player or renderer to obtain the pixels for a roll/crawl. The player or render can then
move and composite it using accelerated algorithms or hardware. See PrSDKRollCrawlSuite.h.

Sequence Info Suite

New in CS4. Calls to get the frame size and pixel aspect ratio of a sequence. This is use-
ful for importers, transitions, or video filters, that provide a custom setup dialog with a pre-
view of the video, so that the preview frame can be rendered at the right dimensions. See
PrSDKSequenceInfoSuite.h.

Version 2, new in CS5.5, adds GetFrameRate().

Version 3, new in CC, adds GetFieldType(), GetZeroPoint(), and
GetTimecodeDropFrame().

String Suite

New in CS4. Calls to allocate, copy, and dispose of PrSDKStrings. See PrSDKStringSuite.h.

Threaded Work Suite

New in CS4. Calls to register and queue up a threaded work callback for processing on a render
thread. If you queue multiple times, it is possible for multiple threads to call your callback. If this
is a problem, you’ll need to handle this on your end.

Universals • 82Adobe Premiere Pro SDK Guide

Time Suite

A SweetPea suite that includes the following structure, callbacks, and enum:

pmPlayTimebase

Member Description
csSDK_uint32 scale rate of the timebase
csSDK_int32 sampleSize size of one sample
csSDK_int32 fileDuration number of samples in file

PrVideoFrameRates

Member Description
kVideoFrameRate_24Drop 24000 / 1001
kVideoFrameRate_24 24
kVideoFrameRate_PAL 25
kVideoFrameRate_NTSC 30000 / 1001
kVideoFrameRate_30 30
kVideoFrameRate_PAL_HD 50
kVideoFrameRate_NTSC_HD 60000 / 1001
kVideoFrameRate_60 60
kVideoFrameRate_Max 0xFFFFFFFF

GetTicksPerSecond

Get the current ticks per second. This is guaranteed to be constant for the duration of the run-
time.
prSuiteError (*GetTicksPerSecond)(

PrTime* outTicksPerSec);

GetTicksPerVideoFrame

Get the current ticks in a video frame rate. inVideoFrameRate may be any of the
PrVideoFrameRates enum.
prSuiteError (*GetTicksPerVideoFrame)(

PrVideoFrameRates inVideoFrameRate,
PrTime* outTicksPerFrame);

Universals • 83Adobe Premiere Pro SDK Guide

GetTicksPerAudioSample

Get the current ticks in an audio sample rate. Returns kPrTimeSuite_RoundedAudioRate
if the requested audio sample rate is not an even divisor of the base tick count and therefore times
in this rate will not be exact. Returns kPrTimeSuite_Success if otherwise.
prSuiteError (*GetTicksPerAudioSample)(

float inSampleRate,
PrTime* outTicksPerSample);

Video Segment Render Suite

This suite uses the built-in software path for rendering, and supports subtree rendering. This
means the plug-in can ask the host to render a part of the segment, and then still handle the rest
of the rendering. This is useful if, for example, one of the layers has an effect that the plug-in can-
not render itself. The plug-in can have the host render that layer, but then handle the other layers
along with the compositing.

In version 2, new in CS5.5, the new call SupportsInitiateClipPrefetch() can be used
to query whether or not a clip supports prefetching.

In version 3, new in CS6, the function signatures have been modernized, using inSequence­
TicksPerFrame rather than inFrameRateScale and inFrameRateSampleSize.

Video Segment Suite

This suite provides calls to parse a sequence and get details on video segments. All the queryable
node properties are in PrSDKVideoSegmentProperties.h. These properties will be returned as
PrSDKStrings, and should be managed using the String Suite. The segments provide a hash
value that the caller can use to quickly determine whether or not a segment has changed. This
hash value can be maintained even if a segment is shifted in time

In version 4, new in CS5.5, the new call AcquireNodeForTime() passes back a seg-
ment node for a requested time. There are also a few new properties for media nodes:
StreamIsContinuousTime, ColorProfileName, ColorProfileData, and
ScanlineOffsetToImproveVerticalCentering.

In version 5, new in CC, a new video segment property is available: Effect_ClipName.

In version 6, new in CC 2014, AcquireFirstNodeInTimeRange() and
AcquireOperatorOwnerNodeID() were added, along with the new node type kVid­
eoSegment_NodeType_AdjustmentEffect.

Universals • 84Adobe Premiere Pro SDK Guide

The basic structure of the video segments is that of a tree structure. There is a Compositor node
with n inputs. Each of those inputs is a Clip node, which has one input which is a Media node,
and it also has n Operators, which are effects.

So, a simple example, three clips in a stack, the top one with three effects looks like this:
Segment
 Compositor Node
 Clip Node
 Media Node (bottom clip)
 Clip Node
 Media Node (middle clip)
 Clip Node
 Media Node (top clip)
 Clip Operators (Blur, Color Corrector, Motion)

To get a good idea of the segment structure, try the SDK player, create a sequence using the SDK
Editing Mode, and watch the text overlay in the Sequence Monitor as you perform edits.

See PrSDKVideoSegmentSuite.h and PrSDKVideoSegmentProperties.h.

Window Suite

New in CS4. This is the new preferred way to get the handle of the mainframe window, especially
for exporters, who don’t have access to the legacy piSuites.

Legacy Callback Suites

piSuites

These callbacks are available to all plug-ins, although many of these callbacks are only appropriate
for specific plug-in types.

typedef struct {
 int piInterfaceVer;
 PlugMemoryFuncsPtr memFuncs;
 PlugWindowFuncsPtr windFuncs;
 PlugppixFuncsPtr ppixFuncs;
 PlugUtilFuncsPtr utilFuncs;
 PlugTimelineFuncsPtr timelineFuncs;
} piSuites, *piSuitesPtr;

Universals • 85Adobe Premiere Pro SDK Guide

Member Description
piInterfaceVer API version

Premiere Pro CS4 - PR_PISUITES_VERSION_9
Premiere Pro CS3 - PR_PISUITES_VERSION_8
Premiere Pro 2.0 - PR_PISUITES_VERSION_7
Premiere Pro 1.5.1 - PR_PISUITES_VERSION_6
Premiere Pro 1.5 - PR_PISUITES_VERSION_5
Premiere Pro 1.0 - PR_PISUITES_VERSION_4
Premiere 6.x - PR_PISUITES_VERSION_3
Premiere 5.1 - PR_PISUITES_VERSION_2
Premiere 5.0 - PR_PISUITES_VERSION_1

memfuncs Pointer to memory functions
windFuncs Pointer window functions
ppixFuncs Pointer PPix functions
utilFuncs Pointer to utility functions. In the utilFuncs, the getSPBasicSuite

callback provides access to the “SweetPea” Suites, which are used
for most of the newer functions.

timelineFuncs Pointer to timeline functions

Memory Functions

Memory and handle allocation. Where possible, use the PPix Creator Suite for PPix-specific al-
location.

Strings passed to and from Premiere in API structures are always null-terminated C strings.

Function Description
newPtr Allocates a block of memory, returns a pointer to the new block.

char* newPtr (csSDK_uint32 size);
newPtrClear Equivalent to newPtr, but initializes the memory to 0.

char* newPtrClear (csSDK_uint32 size);
setPtrSize Resizes an allocated memory block.

void setPtrSize (
PrMemoryPtr *ptr,
csSDK_uint32 newsize);

getPtrSize Returns size in bytes of an allocated memory block.

csSDK_int32 getPtrSize (char *ptr);

Universals • 86Adobe Premiere Pro SDK Guide

Function Description
disposePtr Frees an allocated memory block.

void disposePtr (char *ptr);
newHandle Allocates a block of memory, returning a handle to it.

char** newHandle (csSDK_uint32 size);
newHandleClear Equivalent to newHandle, but initializes the memory to 0.

char** newHandleClear (csSDK_uint32 size);
setHandleSize Resizes an allocated memory handle.

csSDK_int16 setHandleSize (
char **PrMemoryHandle,
csSDK_uint32 newsize);

getHandleSize Returns the size (in bytes) of an allocated block.

csSDK_int32 getHandleSize (
char **PrMemoryHandle);

disposeHandle Disposes of a previously allocated handle.

void disposeHandle (char **PrMemoryHandle);
lockHandle
unlockHandle

These legacy functions are deprecated and should no longer be
used.

Window Functions

Window management routines. Superceded by the Window Suite.

Function Description
updateAllWindows Updates all windows. Windows only, doesn’t work on Mac OS.

void updateAllWindows (void);
getMainWnd Returns the main application HWND.

void getMainWnd (void);

PPix Functions

Used to manipulate a PPix. Superceded by the PPix Creator Suite for PPix allocation and the

Universals • 87Adobe Premiere Pro SDK Guide

PPix Suite for general PPix functions.

Function Description
ppixGetPixels Returns a pointer to the array of pixels contained in a

PPix.

char* ppixGetPixels (PPixHand pix);
ppixGetBounds Returns the bounds of a PPix.

void ppixGetBounds (
PPixHand pix;
prRect *bounds);

ppixGetRowbytes Returns the rowbytes of a PPix so you can properly
parse the pixels returned by ppixGetPixels.

int ppixGetRowbytes (PPixHand pix);
ppixNew Allocates and returns a handle to a new PPix, with speci-

fied bounds. Since this is an older call, the pixel format is
hardcoded to BGRA_4444_8u.

PPixHandle ppixNew (prRect *bounds);
ppixDispose Frees a PPixHand.

void ppixDispose (PPixHand pix);
ppixLockPixels
ppixUnlockPixels

These legacy functions are deprecated and should no lon-
ger be used.

ppixGetPixelAspectRatio Passes back the pixel aspect ratio of a PPixHand.
Premiere populates the longs with the PAR numerator and
denominator.

int ppixGetPixelAspectRatio (
PPixHand pix,
csSDK_uint32 *num,
csSDK_uint32 *den);

ppixGetAlphaBounds Passes back the alpha bounds of a PPixHand.

void ppixGetAlphaBounds (
PPixHand pix,
prRect *alphaBounds);

Universals • 88Adobe Premiere Pro SDK Guide

Utility Functions

Function Description
getSerialNumber Passes back Premiere’s serial number.

void getSerialNumber (char* buffer);

buffer - must be at least 40 characters long.
getFileTimebase Passes back a file’s timebase in a TDB_TimeRecord (allocated by

the plug-in). If the file is already in the sequence, it is preferable
to get a file’s timebase using the Video Segment Suite to get the
kVideoSegmentProperty_Media_StreamFrameRate.

Note: Know your formats. Don’t ask an audio only format for
video, you may get unexpected results.

csSDK_int32 getFileTimebase (
prFileSpec *filespec,
csSDK_int32 audioOnly,
TDB_TimeRecord *result);

filespec - description of the file, use before getFileVideo
audioOnly - if non-zero, return the audio timebase. If zero,

return the video timebase.
result - the returned timebase

getFileVideo Gets a frame of video (at a specified time) from a file. If the file is
already in the sequence, it is preferable to get a file’s video using
the Clip Render Suite.

csSDK_int32 getFileVideo (
prFileSpec *filespec,
csSDK_int32 frame,
PPixHand thePort,
prRect *bounds,
csSDK_int32 flags);

filespec - the description of the file
frame - the frame to retrieve
thePort - where the frame will be delivered, allocate prior to

calling
bounds - the boundary of the port
flags - unused

Universals • 89Adobe Premiere Pro SDK Guide

Function Description
getFileVideoBounds Passes back the bounds of a file. If the file is already in the se-

quence, it is preferable to get a file’s video bounds using the Clip
Render Suite.

csSDK_int32 getFileVideoBounds (
prFileSpec *filespec,
prRect *bounds);

getSPBasicSuite This very important call returns the SweetPea suite that allows
plug-ins to acquire and release all other SweetPea suites.

SPBasicSuite* getSPBasicSuite();
getFileExtString Passes back the list of valid entensions/filter strings given a class

of media (see file types constants below).

csSDK_int32 (*plugGetFileExtStringFunc)(
csSDK_uint32 fileTypes,
char *inBuffer,
csSDK_uint32 inBufferSize);

kFileTypes_Still - still media
kFileTypes_AudioOnly - audio-only media
kFileTypes_AudioVideo - audio and video media
kFileTypes_AllNoIntrinsics - all importable media

types via importer plug-ins (no prproj, txt, etc)

Universals • 90Adobe Premiere Pro SDK Guide

Timeline Functions

Function Description
getClipVideo Superceded by the Clip Render Suite, which provides asynchro-

nous import.

Retrieves a frame from a clip in a segment tree returned from the
Video Segment Suite. It can be used by to retrieve and store a still
frame, such as a title, for playback. This call is expensive; use it
carefully.

csSDK_int32 getClipVideo (
csSDK_int32 frame,
PPixHand thePort,
prRect *bounds,
csSDK_int32 flags,
PrClipID clipData);

frame - the frame number you’re requesting
thePort - allocate using the PPix Creator Suite before calling
bounds - the boundaries of video to return
flags - either kGCVFlag_UseFilePixelAspectRatio

or 0. Setting it to kGCVFlag_
UseFilePixelAspectRatio will return a PPix
stamped with the PAR of the file. Setting it to 0 will return
a PPix adjusted to the PAR of the project and stamped
accordingly. It scales, but does not stretch the PPix to fit
the destination PPix that is passed in. So if the destina-
tion PPix is larger than the frame asked for, the frame
will maintain its frame aspect ratio, letterboxing or pil-
larboxing the frame with transparent black. To import
a frame at its native dimensions, use getClipVid­
eoBounds, allocate the destination PPix using the
dimensions returned, and pass the PPixHand and the
dimensions into getClipVideo. If the frame size is not
the same as the sequence size, the frame must be posi-
tioned in the composite by the plug-in.

clipData - the clipData handle found in prtFileRec

Universals • 91Adobe Premiere Pro SDK Guide

Function Description
getWorkArea Passes back two longs with the start and end of the current work

area (read-only). Set timelineData to the timelineData of the
current sequence.

csSDK_int32 getWorkArea (
PrTimelineID timelineData,
csSDK_int32 *workAreaStart,
csSDK_int32 *workAreaEnd);

getCurrentTimebase Passes back the current timebase of the timeline (scale +
sampleSize).

void getCurrentTimebase(
PrTimelineID timelineData,
csSDK_uint32 *scale,
csSDK_int32 *sampleSize);

timelineData - the timelineData of the current se-
quence

scale - the sequence scale
sampleSize - the sequence sampleSize

getCurrentPos Returns the position of the current time indicator (the position
bar set by the user). If (-1) is returned, the position bar in the
timeline is not present.

csSDK_int32 getCurrentPos(
PrTimelineID timelineData);

timelineData - the timelineData of the current se-
quence

Universals • 92Adobe Premiere Pro SDK Guide

Function Description
getPreviewFrameEx Gets a fully rendered frame from the timeline (all layers). Used by

video filters and transitions for previews in a modal setup dialog.
If the return value is -1, an error occurred, but if it is 0, the call-
back has returned safely. Exporters rendering final movies should
NOT use this callback.

csSDK_int32 getPreviewFrameEx(
PrTimelineID timelineData,
csSDK_int32 inFrame,

PPixHand * outRenderedFrame,
const prRect * inFrameRect,

PrPixelFormat * inRequestedPixelFormatArray
csSDK_int32 inRequestedPixelFormatArrayCount,
csSDK_uint32 inPixelAspectRatioNumerator,
csSDK_uint32 inPixelAspectRatioDenominator,

bool inAlwaysRender);

timelineData - The timelineData of the cur-
rent sequence. Pass a timeline handle as provided in
EffectRecord, VideoRecord, compDoCompi­
leInfo, or imGetPrefsRec.

inFrame - The frame to get, specified in the current timebase.
If a timelineData handle is specified (first param
above), this frame will be relative to the start of the se-
quence.

outRenderedFrame - The destination buffer. Allocate prior to
this call by the plug-in using the PPix Suite. Released by
the caller before returning.

getClipVideoBounds Passes back the dimensions of a clip in a sequence. For rolling/
crawling titles, use the Roll/Crawl Suite to get the dimensions
instead.

csSDK_int32 getClipVideoBounds (
PrClipID inClipData,
prRect *outBounds,
csSDK_uint32 *outPixelAspectRatioNumerator,
csSDK_uint32 *outPixelAspectRatioDenominator);

Universals • 93Adobe Premiere Pro SDK Guide

Function Description
getClipVideoEx Superceded by the Clip Render Suite, which provides asynchro-

nous import.

Retrieves a frame from a clip in a segment tree returned from the
Video Segment Suite. It can be used by to retrieve and store a still
frame, such as a title, for playback. This call is expensive; use it
carefully.

csSDK_int32 getClipVideoEx (
csSDK_int32 inFrame,
PPixHand *outRenderedFrame,
const prRect *inFrameRect,
const PrPixelFormat *inRequestedPixelFormatArray,

csSDK_int32 inRequestedPixelFormatArrayCount,

csSDK_uint32 inPixelAspectRatioNumerator,
csSDK_uint32 inPixelAspectRatioDenominator,
PrClipID inClipData);

inFrame - the frame number you’re requesting, in the timebase
of the clip

outRenderedFrame - Allocated by the host. The plug-in
should dispose of the PPixHand when done

inFrameRect - the boundaries of video to return. To import
a frame at its native dimensions, use getClipVid­
eoBounds. If the frame size is not the same as the
sequence size, the frame must be positioned in the com-
posite by the plug-in.

inClipData - the PrClipID from the video segment

Bottleneck Functions

The pointer to the legacy bottleneck functions is passed only to transitions and video filters.
These functions are not exposed for other plug-in types. These functions are not aware of different
pixel formats, and are intended only for 8-bit BGRA processing.

Sample usage:

((*theData)->bottleNecks->StretchBits) (*srcpix,
 *dstpix,
 &srcbox,
 &srcbox,

Universals • 94Adobe Premiere Pro SDK Guide

 0,
 NULL);

Function Description
StretchBits Stretches and copies an image, including the alpha channel. When the

destination is larger than the source, it performs bilinear interpolation
for smooth scaling.

void StretchBits (
PPixHand srcPix,
PPixHand dstPix,
prRect srcRect,
prRect dstRect,
int mode,
prRgn rgn);

StretchBits only works on 8-bit PPixs. srcRect is the area of the
source PPix to copy; dstRect is used to scale the copy. Valid modes
are cbBlend, cbInterp, and cbMaskHdl

For cbBlend, the low byte of the mode defines the amount of blend
between the source and destination in a range of 0-255.

Example:
To blend 30% of the source with the destination, use cbBlend |
(30*255/100).

While much slower than cbBlend, cbInterp mode does bilinear
interpolation when resizing a source PPix to a larger destination, result-
ing in a much smoother image.

cbMaskHdl tells StretchBits that prRgn is a handle to a 1-bit
deep buffer the same size as the source and destination PPixs, to be
used as a mask. Pass 0 for no clipping. The prRgn parameter is only
used on Windows.

Universals • 95Adobe Premiere Pro SDK Guide

Function Description
DistortPolygon Maps the source rectangle to a four-point polygon in the

destination.

void DistortPolygon (
PPixHand src,
PPixHand dest,
prRect *srcbox,
prPoint *dstpts);

When scaling up, DistortPolygon uses bilinear interpolation; it
uses pixel averaging when scaling down.

MapPolygon Maps a four-point src polygon into a four-point polygon (dstpts). If
the source polygon is a rectangle, it is equivalent to DistortPolygon.

void MapPolygon (
PPixHand src,
PPixHand dest,
prPoint *srcpts,
prPoint *dstpts);

DistortFixed Equivalent to DistortPolygon, using fixed-point coordinates.

void DistortFixed (
PPixHand src,
PPixHand dest,
prRect *srcbox,
LongPoint *dstpts);

FixedToFixed Equivalent to MapPolygon, using fixed-point coordinates.

void FixedToFixed (
PPixHand src,
PPixHand dest,
LongPoint *srcpts,
LongPoint *dstpts);

Universals • 96Adobe Premiere Pro SDK Guide

Function Description
DoIndexMap Image map function.

void DoIndexMap (
char *src,
char *dst,
short row,
short, pixwidth,
short, height,
char *lookup1,
char *lookup2,
char *lookup3);

DoConvolve Convolution function.

void DoConvolve (
unsigned char *src,
unsigned char *dst,
short *inmatrix,
short, rowBytes,
short, width,
short, height);

Hardware Integration • 97Adobe Premiere Pro SDK Guide

4Hardware Integration

To integrate hardware with Premiere Pro, you may consider developing up to five types of plug-
ins: importers, recorders, exporters, transmitters, and device controllers. Premiere Pro provides
the user interface for the capture, timeline, monitor, and export panels; the plug-ins provide the
functionality behind the interface.

Hardware Integration Components

Importers

Importers are used whenever frames of video or audio from a clip are needed. To give Premiere
Pro the ability to read media that uses a new format or codec, develop an importer. See the
Importers chapter for more information.

Recorders

Users may choose a recorder in Project > Project Settings > General > Capture Format. Recorders
are used to grab frames from a hardware source and write them to a file, to be imported for edit-
ing. See the Recorders chapter for more information.

Exporters

Exporters are used whenever Premiere Pro renders preview files, or performs an export on a clip
or sequence. To give Premiere Pro the ability to write media that uses a new format or codec,
develop an exporter. The exporter used to render preview files in the timeline is set in Sequence >
Sequence Settings > Preview File Format. The exporter used for exports is chosen when the user
selects File > Export > Media > File Type. See the Exporters chapter for more information.

Hardware Integration • 98Adobe Premiere Pro SDK Guide

Transmitters

A transmitter handles the display of video on any external A/V hardware and secondary output.
To give Premiere Pro the ability to play video out to hardware for preview and final playout, write
a transmitter. See the Transmitters chapter for more information.

ClassID, Filetype and Subtype

All plug-in types that support media must identify unique classID, filetype, and subtype. These
are all four character codes, or ’fourCCs’.

Identifier Purpose
filetype Identifies the plug-in’s associated file type(s). Plug-ins create lists of filetypes

they support.
subtype Differentiates between files of the same filetype. Identifies the codec or com-

pression to be used.
classID With the new editing mode system starting in CS4, the classID is far less

important. It is used as part of the identification for exporters in the Editing
Mode XML. And plug-ins may share information with most other plug-ins
running in the same process using the ClassData Functions below.

ClassData Functions

All plug-in types that support media can use these callbacks to share information associated with
their classID.

For example, these plug-ins can confirm their hardware is present and operational using the
ClassData functions. They all call getClassData during initialization. If getClassData re-
turns 0, the module checks for and initialize the hardware. It then calls setClassData to store
information about the current context. Use handles, not pointers, for storing info.

typedef struct {
SetClassDataFunc setClassData;
GetClassDataFunc getClassData;

} ClassDataFuncs, *ClassDataFuncsPtr;

Function Description

Hardware Integration • 99Adobe Premiere Pro SDK Guide

setClassData Writes class data, destroys previous data.

int setClassData (
unsigned int theClass
void *info);

theClass - the class being set. Use a unique 4-byte code.
info - the class data to be set. It can be used as a pointer or a handle.

Note that all plug-ins that share the data must use the same
data structure.

getClassData Retrieves the class data for the given class.

int getClassData (unsigned int theClass);

theClass - the class for which to retrieve data.

Importers • 100Adobe Premiere Pro SDK Guide

Importers provide video, audio and/or closed captioning from the media source. This source can
be a single file, a set of files, a communication link between another application, etc.

Standard importers appear as choices in the File > Import dialog, in the Files of type drop-down
menu. Importers can support movies, still images, series of still images, and/or audio. If your im-
porter provides enhanced support for a format already supported by another importer that ships
with Premiere, set a high value in imImportInfoRec.priority to give your importer the
first opportunity to handle the file.

Synthetic importers synthesize source material, rather than reading from disk. They appear in the
File > New menu.

Custom importers are a special type of synthetic importer, implemented to better support titlers.
Custom importers can create files on disk; synthetic importers don’t. Custom importers either
create new media or import existing media handled by the importer. After the file is created, the
media is treated like a standard file by the host application. Additionally, the media can be modi-
fied by the importer when the user double-clicks on it in the Project Panel.

Importer Type Reads from disk Creates clips Menu Location
Standard Yes No File > Import
Synthetic No Yes File > New
Custom Yes Yes File > New

File > Import

If you’ve never developed an importer before, you can skip the What’s New sections, and go di-
rectly to Getting Started.

5Importers

Importers • 101Adobe Premiere Pro SDK Guide

What’s New

What’s New in Premiere Pro CC 2019 (13.0)

We’ve begun adding colorspace support to Premiere Pro’s APIs, beginning with Importers.

What’s New in Premiere Pro CC 2014

Importers can now choose the format they are rendering in, which allows importers to change
pixel formats and quality based on criteria like enabled hardware and other Clip Source Settings,
such as HDR. To handle the negotiation, implement imSelectClipFrameDescriptor.

imSourceVideoRec now includes a quality attribute. PPix Cache Suite is
now at version 6, adding AddFrameToCacheWithColorProfile2() and
GetFrameFromCacheWithColorProfile2(), which are the same as the ones added in
version 5 with the addition of a PrRenderQuality parameter.

imFileInfoRec8.highMemUsage is no longer supported.

What’s New in Premiere Pro CC October 2013 release?

imInitiateAsyncClosedCaptionScanRec now provides extra fields for the importer to
fill in the estimated duration of all the captions. This is useful for certain cases where the embed-
ded captions contain many frames of empty data.

What’s New in Premiere Pro CC?

Starting in CC, importers can support closed captioning that is embedded in the source media.
Note that Premiere Pro can also import and export captions in a sidecar file (e.g. .mcc, .scc, or
.xml) alongside any media file, regardless of the media file format. This does not require any spe-
cific work on the importer side. The importer only needs to add support if it will support embed-
ded closed captions.

Importers can now support audio beyond basic mono, stereo, and 5.1, without implementing
multiple streams (existing importers do not need to be updated). The importer specifies a chan-
nel layout by implementing the new imGetAudioChannelLayout selector. Otherwise the channel
layout will be assumed to be discrete.

The clip preferences are now passed with imIndPixelFormatRec, so that an importer can
choose to return varying pixel formats depending on the Clip Source Settings.

Importers • 102Adobe Premiere Pro SDK Guide

What’s New in Premiere Pro CS6.0.2?

This release adds more support for growing files by adding a new flag, imFileInfoRec8.
mayBeGrowing.

What’s New in Premiere Pro CS6?

Importers can now bring in stereoscopic footage as a single clip with separate left and right chan-
nels.

With some additional work, importers can now support growing files. The refresh rate for grow-
ing files is set by the user in Preferences > Media > Growing Files. The importer should get the
refresh rate using the new call GetGrowingFileRefreshInterval() in the Importer File
Manager Suite. It should call RefreshFileAsync() to refresh the file.

A new selector, imQueryInputFileList, was added to support Collect Files in After Effects for file
types that use more than a single file. In imImportInfoRec, a new member, canProvide­
FileList, specifies whether the importer can provide a list of all files for a copy operation. If
the importer does not implement this selector, the host will assume the media just uses a single
file at the original imported media path.

The Media Accelerator Suite is now at version 4. FindPathInDatabaseAndValidate-
ContentState provides a new way to find existing media accelerators, making sure they are
up-to-date.

Importers can now choose whether or not they want to provide peak audio data on a clip-by-clip
basis. The importer-wide setting still remains in imImportInfoRec.canProvidePeak­
Audio, but an importer can override the general setting by setting imFileInfoRec8.can­
ProvidePeakAudio appropriately.

What’s New in Premiere Pro CS5.5?

Importers can now support color management, when running in After Effects. The importer
should set imImageInfoRec.colorProfileSupport to imColorProfileSupport_
Fixed, and then describe the color profiles supported by the clip using the new imGetIndColor­
Profile selector. When importing the frame, specify the color profile in imSourceVideoRec.
selectedColorProfileName. The PPix Cache Suite has been updated to differentiate
between color profiles as well.

New canProvidePeakAudio flag to allow an importer to provide peak audio data by re-
sponding to imGetPeakAudio.

Importers • 103Adobe Premiere Pro SDK Guide

The new return value, imRequiresProtectedContent, allows an importer to be disabled
if a library it depends on has not been activated.

What’s New in Premiere Pro CS5?

When an importer’s settings dialog is opened, the importer now has access to the resolution, pixel
aspect ratio, timebase, and audio sample rate of the source clip, in imGetPrefsRec.

Custom importers can now use a new call in the Importer File Manager Suite,
RefreshFileAsync(), to be able to update a clip after it is modified in imGetPrefs8.

Two new selectors have been added. imQueryDestinationPath allows importers that trim or copy
files to be able to change the destination path of the trimmed or copy file. imQueryContentState
gives the host an alternate way of checking the state of a clip, for clips that have multiple source
files. A new return value, inFileNotAvailable can be returned from imQueryContentState
if the clip is no longer available because it is offline or has been deleted.

As a convenience, when a file is opened, an importer can tell Premiere Pro how much memory to
reserve for the importer’s usage, rather than calling ReserveMemory in the Memory Manager
Suite. The importer should pass back this value in imFileOpenRec8.outExtraMemory­
Usage.

Several new return values are available for more descriptive error reporting: imBadHeader,
imUnsupportedCompression, imFileOpenFailed, imFileHasNoImporta­
bleStreams, imFileReadFailed, imUnsupportedAudioFormat, imUnsupport­
edVideoBitDepth, imDecompressionError, and imInvalidPreferences.

What’s New in Premiere Pro CS4?

For CS4 only, importers are loaded and called from a separate process. As a result of being in
a separate process, (1) all importers must do their own file handling, (2) privateData is no
longer accessible from imGetPrefs8, and (3) the compressed frame selectors such as imGetCom­
pressedFrame are no longer supported (this may now be achieved using custom pixel formats and
a renderer plug-in).

To debug importers, attach to the ImporterProcessServer process. There is also a separate
Importer Process Plugin Loading.log.

All legacy selectors have been removed, and are now longer supported. All structures used only
in these legacy selectors have been removed as well.

Importers • 104Adobe Premiere Pro SDK Guide

There are built-in XMP metadata handlers for known filetypes. These handlers write and read
metadata to and from the file, without going through the importer. imSetTimeInfo8 is no longer
called, since this is set by the XMP handler for that filetype.

All file-based importers (which does not include synthetics) are required to do their own file
handling now, rather than having Premiere Pro open the files. The imCallbackFuncs:
OpenFileFunc and ReleaseFileFunc are no longer supported.

Due to the out-of-process importing, privateData is not accessible during imGetPrefs8, and
has been removed from imGetPrefsRec.

imGetFrameInfo, imDisposeFrameInfo, imGetCompressedFrame, and imDisposeCompressedFrame
are no longer supported. Supporting a custom pixel format in an importer, a renderer, and an
exporter is the new way to implement smart rendering, by passing custom compressed data from
input to output.

New imFrameNotFound return code. Returned if an importer could not find the requested
frame (typically used with async importers).

New in Premiere Pro 4.1, importer prefs are now part of imSourceVideoRec, passed to both
imGetSourceVideo and the async import calls

New in Premiere Pro 4.1, there is a new filepath member in imFileInfoRec8. For clips
that have audio in files separate from the video file, set the filename here, so that UMIDs can
properly be generated for AAFs.

What’s New in Premiere Pro CS3?

Importers can specify an initial poster frame for a clip in imImageInfoRec.

Importers can specify subtype names during the new imGetSubTypeNames selector. This selec-
tor is sent after each imGetIndFormat, which gives an importer the opportunity to enumerate all
the fourCCs and display names (e.g. “Cinepak”) of their known compression types for a specific
filetype. The importer can return imUnsupported, or create an array of imSubTypeDe­
scriptionRec records (pairs of fourCCs and codec name strings) for all the codecs/subtypes
it knows about.

Importers that open their own files should specify how many files they keep open between imO­
penFile8 and imQuietFile using the new Importer File Manager Suite, if the number is not equal
to one. Importers that don’t open their own files, or importers that only open a single file should
not use this suite. Premiere’s File Manager now keeps track of the number of files held open by
importers, and limits the number open at a time by closing the least recently used files when too
many are open. On Windows, this helps memory usage, but on Mac OS this addresses a whole
class of bugs that may occur when too many files are open.

Importers • 105Adobe Premiere Pro SDK Guide

Importers can also specify that certain files have very high memory usage, by setting im­
FileInfoRec8.highMemUsage. The number of files allowed to be open with this flag set to
true is currently capped at 5.

Importers can now specify an arbitrary matte color for premultiplied alpha channels in imIm­
ageInfoRec.matteColor. Importers can state that they are uncertain about a clip’s pixel aspect
ratio, field type, or alpha info in imImageInfoRec.interpretationUncertain.

The imInvalidHandleValue is now -1 for Mac OS.

Importers can specify a transform matrix for frames by setting imImageInfoRec.can­
Transform = kPrTrue, and then during imImportImage, when imImportImageRec.
applyTransform is non-zero, use imImportImageRec.transform, and destClip­
Rect to calculate the transform - This code path is currently not called by Premiere Pro. After
Effects uses this call to import Flash video.

New in Premiere Pro 3.1, the new capability flag, imImportInfoRec.canSupplyMeta­
dataClipName, allows an importer to set the clip name from metadata, rather than the file-
name. The clip name should be set in imFileInfoRec8.streamName. This is useful for
clips recorded by some new file-based cameras.

New in Premiere Pro 3.1, the new imGetFileAttributes selector allows an importer to provide the
clip creation date in the new imFileAttributesRec.

Getting Started

The Basics of Import

For each clip, importers can tell Premiere the resolutions and pixel formats they can decode video
frames to. Premiere will request video frames as needed during scrubbing, playback, or export.
Audio will be requested right when the clip is imported, if audio conforming or peak file genera-
tion is necessary. If audio conforming is not necessary, audio frames will be requested as needed
during scrubbing, playback, or export. Premiere requests audio in arrays of 32-bit float, uninter-
leaved format.

Importers • 106Adobe Premiere Pro SDK Guide

Try the Sample Importer Plug-ins

Choose which one of the three sample importers matches closest with your desired functionality.
Build that one, or if you are still not sure, build all three! Step through the code in your debugger
to learn order of events. Start your importer by modifying one of the SDK samples.

imGetSourceVideo versus imImportImage

For synchronous import, there are two different selectors an importer can use to provide frames
to the host. Why? imGetSourceVideo is best for media that has specific resolutions. Importers
that support imGetSourceVideo can import frames at their native resolution or specify preferred
resolutions, rather than having to scale the frames to an arbitrary size. imImportImage is only
useful for resolution-independent video, such as vector-based graphics. Choose the one that
fits the media your importer will support. The SDK importer demonstrates imGetSourceVideo
because resolution dependent video is much more common. The synthetic importer sample dem-
onstrates imImportImage because it generates video on-the-fly and doesn’t have a preference as to
video resolution. imImageInfoRec.supportsGetSourceVideo should be set to true if
the importer wants to support imGetSourceVideo.

Asynchronous Import

Importers can optionally support asynchronous calls to read frames for better performance.
imImageInfoRec.supportsAsyncIO should be set to true if the importer wants to sup-
port asynchronous import. The importer can implement imCreateAsyncImporter, which tells the
importer to create an asynchronous importer object using the data provided, and store it in imA­
syncImporterCreationRec. This async importer object must implement a separate entry
point from a standard importer because it does not follow the same rules as a standard importer.

All calls to AsyncImporterEntry are reentrant, except for the aiClose selector. aiClose will
only be called once, but may be called while other calls are still executing. No calls will be made
after aiClose is called.

Here is an overview of the lifetime of an async importer:
 1.) The host calls imOpenFile and imGetInfo on the standard importer.
 2.) The host calls imCreateAsyncImporter on the standard importer. At this
 time, the standard importer creates the private data for the async
 importer. The async importer MUST NOT contain a link to the standard
 importer, as their lifetimes are now decoupled. The async importer, therefore,
 must contain copies of all relevant private data from the creator
 importer. The importer preferences are also guaranteed to not change
 during the lifetime of the async importer.
 3.) The host uses the async importer to perform i/o.
 4.) The host closes the async importer, forgetting about it. This will happen

Importers • 107Adobe Premiere Pro SDK Guide

 whenever the app loses focus, or when the async importer is no longer
 needed.

privateData

Don’t use global variables to store data. Use privateData instead. Each clip can have its own
privateData. The host application will automatically pass the correct privateData to the
appropriate importer instance.

For privateData, create a handle to the custom structure you wish to store (during imGet­
Info8 or imGetPrefs8.) and save the handle to the privateData member of the structure passed
in. The importer is responsible for allocating and deallocating the memory for privateData
using Premiere’s memory functions. Free the allocated privateData during imCloseFile or
imShutdown, as appropriate.

Clip Source Settings

This data is unique to each clip instance, and can be used to store clip-wide data that affects the
appearance of video and/or audio in the clip, usually user-modifiable. For example, Clip Source
Settings for a titler/graphics importer could contain all the data describing the text and shapes for
that clip. For a raw video clip, it could contain metadata that affects how the video is developed
prior to import.

Starting in Premiere Pro CC 2014, importers can now choose the format they are rendering in,
which allows importers to change pixel formats and quality based on criteria like enabled hard-
ware and other Clip Source Settings, such as HDR. To handle the negotiation, implement imSe­
lectClipFrameDescriptor.

Clip Source Settings can be shown on file creation (for synthetic or custom importers) or when
a clip is double-clicked. Settings data should be stored in a disk-safe prefs structure, which is
defined by the importer. Premiere will allocate the prefs based on the prefsLength re-
turned from the first call to imGetPrefs8. Premiere will deallocate the prefs when it is no longer
needed.

Once prefs has been allocated, the importer should show its setup dialog during all subsequent
calls to imGetPrefs8, and store any setup dialog settings in prefs. Like privateData, each
clip has its own prefs, and the host application automatically passes the correct prefs to the ap-
propriate importer instance.

If the user changes the Clip Source Settings in a way such that the frames should be reimported,
then the importer should use the Importer File Manager Suite to call RefreshFileAsync()
on the main file. This is demonstrated in the SDK Custom Importer sample code.

Importers • 108Adobe Premiere Pro SDK Guide

Showing a Video Preview in the Settings Dialog

If a clip is placed in the timeline, and its settings dialog is opened by double-clicking in the time-
line, then the import can get frames from the timeline of the settings dialog. Only the rendered
frames on layers beneath the current clip or timeline location are available. Use the getPre­
viewFrameEx callback with the time given by tdbTimelocation in imGetPrefsRec.
timelineData is also valid during imGetPrefs8.

File Handling

Basic importers that bring in media from a single file can rely on the host to provide basic file
handling. If a clip has child files or a custom file system, an importer can provide its own file han-
dling. Set canOpen, canSave, and canDelete to true during imInit, and respond to imO­
penFile8, imQuietFile, imCloseFile, imSaveFile8, imDeleteFile8. Use the Async File Reader Suite for
cross-platform file operations.

Quieting versus Closing a File

When the application loses focus, importers receive imQuietFile for each file it has been asked to
open. Update any PrivateData and close the file. If the project is closed, imCloseFile is sent,
telling the importer to free any PrivateData. If the importer didn’t store any PrivateData,
it will not receive imCloseFile.

Growing Files

Starting in CS6.0.2, an importer should set imFileInfoRec8.mayBeGrowing to true if it
may grow after it has been imported. If an importer reports that a certain clip may be growing,
Premiere Pro adds it to a list of files that are called back periodically, where the period is based on
the user preference in the Media Preferences > Growing Files. The Growing File Manager then
wakes up at the interval and refreshes the clip if the media state is different.

In CS6.0.0 and CS6.0.1, the importer should get the refresh rate using the new call
GetGrowingFileRefreshInterval() in the Importer File Manager Suite. It should call
RefreshFileAsync() to refresh the file.

Importing from Streaming Sources

For importing video from a streaming source, in order to pretend that the file is a local file or
available on the network, create a placeholder file like video_proxy.abc.

Importers • 109Adobe Premiere Pro SDK Guide

Inside this file, include info that lets your importer know it is your own type, and the http path,
like this:
“MyCompany ABC streaming format placeholder file
https://myurl.com/video.abc”

Your importer would open the local video_proxy.abc file, check the header and find it is your own
placeholder file, and then access the real contents at the http location included. To create the local
.abc files, you could use a custom importer that presents a OS dialog to choose the remote file, or
a Premiere panel to do so. The Panel SDK can be found here:
https://github.com/Adobe-CEP/Samples/tree/master/PProPanel

If the filetype is an existing filetype supported by Premiere Pro, then set a high value in imIm­
portInfoRec.priority to give your importer the first opportunity to handle the file.

For your filetype to be visible in the Proxy > Attach Proxies window, set imIndFormatRec.
flags |= xfIsMovie (this flag is labeled obsolete, but still needed for this case)

If your importer supports different fractional resolutions and decode qualities, the fractional reso-
lutions can be enumerated in response to the selector imGetPreferredFrameSize, and the decode
quality hint is sent on import requests to your importer (for example in imSourceVideoRec.
inQuality).

Audio Conforming and Peak File Generation

When a clip that contains audio is imported into Premiere, one or two types of files may be gener-
ated:

First, a separate .pek file is always created. This contains peak audio samples for quick ac-
cess when Premiere needs to draw the audio waveform, for example in the Source Monitor or
Timeline panel.

Second, the audio may be conformed into a separate .cfa file. The conformed audio is in an inter-
leaved 32-bit floating point format that matches the sequence audio sample rate, to maximize the
speed at which Premiere can render audio effects and mix it without sacrificing quality.

Both of these files can be generated through sequential calls for audio using imImportAudio7.
Audio conforming cannot be disabled through the Premiere menus or API. However, if an im-
porter can provide random-access, uncompressed audio of the clip, Premiere will not conform
the audio. All compressed audio data must be conformed.

Specifically, it is important to set these flags to avoid conforming:
imImportInfoRec.avoidAudioConform = kPrTrue;
imFileInfoRec8.accessModes |= kRandomAccessImport;

Importers • 110Adobe Premiere Pro SDK Guide

Starting in CS5.5, peak audio data can also optionally be provided by the importer, if the importer
implements a faster way to read the peak audio data from the clip. By setting imImportInfoRec.
canProvidePeakAudio to non-zero, the importer will be sent imGetPeakAudio whenever this data
is requested. Starting in CS6, if an importer wants to provide peak audio data on a clip-by-clip
basis, it can set imFileInfoRec8.canProvidePeakData accordingly.

The location of the .cfa and .pek files is determined by the user-specified path in Edit >
Preferences > Media > Media Cache Files. When the project is closed, the files will be cleaned up.
If the source clip is not saved in the project, the associated conformed audio files will be deleted.

Importers can get audio for scrubbing, playing and other timeline operations before conforming
has completed, resulting in responsive audio feedback during conforming. To do this, they must
support both random access and sequential access audio importing. The kSeparateSequen­
tialAudio access mode should be set in imFileInfoRec8.accessModes.

Quality Levels

Importers can optionally support two different quality modes, with the imDraftMode flag that
is used in imImportImageRec.

Closed Captioning

Starting in CC, importers can support closed captioning that is embedded in the source media.
The built-in QuickTime importer provides this capability. Note that Premiere Pro can also im-
port and export captions in a sidecar file (e.g. .mcc, .scc, or .xml) alongside any media file, regard-
less of the media file format. This does not require any specific work on the importer side.

To support embedded closed captioning, set imImportInfoRec.canSupportClosed­
Captions to true. The importer should handle the following selectors: imInitiateAsyncClosed­
CaptionScan, imGetNextClosedCaption, and imCompleteAsyncClosedCaptionScan.

imInitiateAsyncClosedCaptionScan will be called for every file that is imported through an im-
porter that sets canSupportClosedCaptions to true. The plug-in should at this point de-
termine whether or not there is closed captioning data for this file. If not, then the plug-in should
simply return imNoCaptions, and everything is done. If the plug-in didn’t report an error for
that call, then imGetNextClosedCaption will be called until the plug-in returns imNoCaptions.
After which, imCompleteAsyncClosedCaptionScan will be called informing the importer that the
host is done requesting captions.

Both imGetNextClosedCaption and imCompleteAsyncClosedCaptionScan may be called from a
different thread from which imInitiateAsyncClosedCaptionScan was originally called. To help
facilitate this, outAsyncCaptionScanPrivateData during imInitiateAsyncClosedCaption­
Scan can be allocated by the importer to be used for the upcoming calls, which can be deallocated

Importers • 111Adobe Premiere Pro SDK Guide

in imCompleteAsyncClosedCaptionScan.

N-Channel Audio

Starting in CC, for audio configurations beyond mono, stereo, and 5.1, an importer can specify
a channel layout by implementing the new imGetAudioChannelLayout selector. Otherwise the
channel layout will be assumed to be discrete. For support prior to CC, the importer needs to
import them as multiple streams.

Multiple Streams

Importers can support multiple streams of audio and/or video. For most filetypes with a single
video and a simple audio configuration (mono, stereo, or 5.1), only a single stream is necessary.
Multiple streams can be useful for stereoscopic footage, layered file types (like Photoshop PSD
files), or clips with complex audio configuration (such as 4 mono audio channels). The follow-
ing describes the general case of multiple streams. For stereoscopic importers, please refer to the
description further down.

An importer describes each stream one-by-one during iterative calls to imGetInfo8. In response
to each call, the importer describes one stream, and returns imIterateStreams, until it
reaches the last stream, and then it returns imBadStreamIndex. Set imFileInfoRec8-
>streamsAsComp = kPrFalse, so that the set of streams appear as a single clip within
Premiere Pro.

In imGetInfo8, save streamIdx in privateData, to have access to it later. That way, when
called in imImportAudio7, the importer will know which stream of audio to pass back.

See the sample code in the SDK File Importer, which can be turned on by uncommenting back in
the MULTISTREAM_AUDIO_TESTING define in SDK_File_Import.h.

Stereoscopic Video

First, an importer must advertise multiple video streams. During imGetInfo8, the host passes in
the stream index in imFileInfoRec8.streamIdx. If the clip has a second stream, then on
index 0 the importer should return imIterateStreams and it will be called again for the sec-
ond stream. On the second one you return imNoErr, as before. The nice thing is that this works
in Premiere Pro CS5.5 and earlier - when two video streams are present, on import, they will just
appear as two different project items.

Prior to CS6, an importer would need to have a prefs structure and on imGetInfo8 it would
need to store the stream index in that structure. With CS6 this is a lot simpler. Now, in the im­
SourceVideoRec (passed in imGetSourceVideo, and part of the aiFrameRequest for async
importers), the host application passes in the currentStreamIndex (in the value formerly

Importers • 112Adobe Premiere Pro SDK Guide

known as unused1). This makes it much easier to just check when providing a PPix and dif-
ferentiate the two streams.

Now, obviously, it is not desirable to have two project items. In order to get them merged, an
importer needs to label the streams (the logic here is pretty simple, if there are multiple labeled
video streams, it will appear as a single project item, and all views on that item will show the first
stream). For this there is a new selector: imQueryStreamLabel. The struct passed to the importer
has its privateData, prefs data, and the stream index, and the label needs to be passed back in a
PrSDKString. If you’re not familiar with PrSDKStringSuite, it’s fairly obvious how to use.
In this case you’ll be allocating a string, passing either UTF-8 data, or UTF-16 data.

In PrSDKStreamLabel.h we define two labels: kPrSDK_StreamLabelStereoscopic_
Left and kPrSDKStreamLabel_Stereoscopic_Right. By convention, we expect Left
to be stream 0 and Right to be stream 1. This is purely for consistency - if we have multiple stereo
clips from multiple importers, we would want the thumbnails to all be consistent. If we stick to
this convention, then the thumbnails will all be Left.

To integrate well with other third-parties, we strongly encourage using these labels for stereoscop-
ic importers. However, the entire StreamLabel mechanism is intentionally left quite general. You
could use whatever labels you want in your importers and effects, and when you request the video
segments you can pass whatever label you would like. If you have other uses for this, we would be
interested to hear about them, and we would welcome any bug reports.

Project Manager Support

The Project Manager in Premiere Pro allows users to archive projects, trim out unused media, or
collect all source files to a single location. Importers are the most knowledgable about the sources
they work with. So Premiere Pro doesn’t make any assumptions about the source media, but
instead relies on the importers to handle the trimming and file size estimates. Only importers that
specifically support trimming will trim and not copy when the Project Manager trims projects.

To support trimming, importers will want to set the canCalcSizes and canTrim flags dur-
ing imInit, and support imCalcSize8, imCheckTrim8, and imTrimFile8.

If the each clip has more than one source file (such as audio channels in separate files), the im-
porter should also set canCopy and support imCopyFile. Otherwise, the Project Manager will
not know about the other source files.

External files, such as textures, logos, etc. that are used by an importer instance but do not appear
as footage in Project panel, should be registered with Premiere Pro using the File Registration
Suite during imGetInfo8 or imGetPrefs8. Registered files will be taken into account when trim-
ming or copying a project using the Project Manager.

Importers • 113Adobe Premiere Pro SDK Guide

Creating a Custom Importer

This variant of the importer API allows importers to dynamically create disk-based media while
working within Premiere. A titler plug-in or similar should use this API. Once your clip is cre-
ated, it is treated like any other standard file and will receive all standard missing file handling.

A Custom Importer must do the following:

- Set the following flags true in imImportInfoRec; canCreate, canOpen, addToMenu,
noFile. This tells Premiere your plug-in will create a clip on disk at imGetPrefs8 time.

- To determine when you need to create a new clip vs. modify an existing clip, check the im­
FileAccessRec filename. If it’s identical to the plug-in display name (as set in the PiPL), cre-
ate a new clip; otherwise modify the clip.

- If the user cancels from your dialog when creating a new clip, return imCancel.

- If the clip is modified, the importer needs to do a few things for Premiere to pick up the changes.
Put your file access information in the supplied imFileAccessRec. Premiere will use this data
to reference your clip from now on. Close the file handle after you create it. Return imSetFile
after creating a file handle in imGetPrefs8., and call RefreshFileAsync() in the Importer
File Manager Suite to notify Premiere that the clip has been modified. Premiere will immediately
call you to open the file and return a valid imFileRef. Respond to imOpenFile8, imQuietFile,
imCloseFile at a minimum.

Real-Time Rolling and Crawling Titles

For RT rolls and crawls, a player and importer must be specially designed to work together. An
importer can implement the appropriate functionality, but it is up to the player to take advantage
of it.

Importers can make image data available for rolling and crawling titles, using imImageIn­
foRec.isRollCrawl. If the importer sets it to non-zero, this declares that the image is a title
or other image that does roll/crawl, and that the importer supports the imGetRollCrawlInfo and
imRollCrawlRenderPage selectors. imGetRollCrawlInfo is used to get info on the roll/crawl from
the importer, and imRollCrawlRenderPage is used to get a rendered page of the roll/crawl.

Importers • 114Adobe Premiere Pro SDK Guide

Troubleshooting

How to Get First Crack at a File

To get the first opportunity to import a filetype also supported by a built-in importer (e.g. MPEG,
AVI, QuickTime, etc), provide a different subtype and classID in order for your importer
to be called for the types of files you support. imImportInfoRec.priority must be higher
than any of the other importers for that filetype. Set this value to 100 or higher to override all
built-in importers. Premiere Pro has more than one type of AVI importer and MPEG importer,
which use this same prioritization mechanism. So your importer can override all of them and get
the first shot at a filetype.

Just because you want to take over handling some files of a given filetype, it doesn’t mean you
have to handle all of them. To defer an unsupported subtype to a lower priority importer,
return imBadFile during imOpenFile8 or imGetInfo8. See the Media Abstraction chapter for
more information on filetypes, subtypes, and classIDs.

Format repeated in menu?

To avoid having your importer appear multiple times in the file formats supported pop-up list, fill
out the formatName, formatShortName and platform extension once and only once during
your imGetIndFormat.

Resources

Importers must contain a IMPT resource. Premiere uses this to identify the plug-in as an im-
porter. Also, depending on the type of importer (standard, synthetic, or custom), a PiPL may be
required.

Entry Point

csSDK_int32 xImportEntry (
 csSDK_int32 selector,
 imStdParms *stdParms,
 void *param1,
 void *param2)

selector is the action Premiere wants the importer to perform. stdParms provides callbacks
to obtain additional information from Premiere or to have Premiere perform tasks. param1

Importers • 115Adobe Premiere Pro SDK Guide

and param2 vary with the selector; they may contain a specific value or a pointer to a structure.
Return imNoErr if successful, or an appropriate return code.

Standard Parameters

A pointer to this structure is sent from the host application to the plug-in with every selector.

typedef struct {
 csSDK_int32 imInterfaceVer;
 imCallbackFuncs *funcs;
 piSuitesPtr piSuites;
} imStdParms;

Member Description
imInterfaceVer Importer API version

Premiere Pro CC 2014 - IMPORTMOD_VERSION_15
Premiere Pro CC - IMPORTMOD_VERSION_14
Premiere Pro CS6.0.2 - IMPORTMOD_VERSION_13
Premiere Pro CS6 - IMPORTMOD_VERSION_12
Premiere Pro CS5.5 - IMPORTMOD_VERSION_11
Premiere Pro CS5 - IMPORTMOD_VERSION_10
Premiere Pro CS4 - IMPORTMOD_VERSION_9

funcs Pointers to callbacks for importers
piSuites Pointer to universal callback suites

Importer-Specific Callbacks

typedef struct {
 ClassDataFuncsPtr classFuncs;
 csSDK_int32 unused1;
 csSDK_int32 unused2;
} imCallbackFuncs;

typedef csSDK_int32 (*importProgressFunc){
 csSDK_int32 partDone;
 csSDK_int32 totalToDo;
 void *trimCallbackID};

Function Description
classFuncs See ClassData functions.

Importers • 116Adobe Premiere Pro SDK Guide

importProgressFunc Available in imSaveFileRec and imTrimFileRec dur-
ing imSaveFile8 and imTrimFile8. Callback function pointer
for use during project archiving or trimming to call into
Premiere and update the progress bar and check for cancella-
tion. Either imProgressAbort or imProgressCon­
tinue will be returned.

The trimCallbackID parameter is passed in the same
structures.

Selector Table

Before implementing a handler for a certain selector, make sure that it is really necessary for your
importer. Many selectors are optional, and only useful for certain special needs.

The Synth column indicates whether or not the selector is applicable to synthetic importers.
Custom importers can respond to any of the selectors.

Selector param1 param2 Synth
imInit imImportInfoRec * unused Yes
imShutdown unused unused Yes
imGetIndFormat (int) index imIndFormatRec * Yes
imGetSupports8 unused unused Yes
imGetSupports7 unused unused Yes
imGetInfo8 imFileAccessRec8 * imFileInfoRec8 * Yes
imCloseFile imFileRef * (void*)

PrivateData **
No

imGetIndPixelFormat (int) index imIndPixel-
FormatRec *

Yes

imGetPreferredFrameSize imPreferredFrame-
SizeRec *

unused Yes

imSelectClipFrameDe­
scriptor

imFileRef imClipFrameDe­
scriptorRec *

Yes

imGetSourceVideo imFileRef imSourceVideoRec * Yes
imCreateAsyncImporter imAsyncImporter-

CreationRec *
unused Yes

imImportImage imFileRef imImportImageRec * Yes
imImportAudio7 imFileRef imImportAudio­

Rec7 *
Yes

imResetSequentialAudio imFileRef imImportAudio­
Rec7 *

Yes

Importers • 117Adobe Premiere Pro SDK Guide

imGetSequentialAudio imFileRef imImportAudio­
Rec7 *

Yes

imGetPrefs8 imFileAccessRec8 * imGetPrefsRec * Yes
The following selectors are optional, to provide custom file handling
imOpenFile8 imFileRef * imFileOpenRec8 * No
imQuietFile imFileRef * (void*)

PrivateData **
No

imSaveFile8 imSaveFileRec8 * unused No
imDeleteFile imDeleteFileRec * unused No
The following selectors are optional, for better support copying and trimming files using the
Project Manager
imCalcSize8 imCalcSizeRec * imFileAccessRec8 * No
imCheckTrim8 imCheckTrimRec * imFileAccessRec8 * No
imTrimFile8 imFileAccessRec8 * imTrimFileRec8 * No
imCopyFile imCopyFileRec * unused No
imRetargetAccelerator imAcceleratorRec * unused No
imQueryDestinationPath imQueryDestination­

PathRec *
unused No

The following selectors are used for embedded Closed Captioning support.
imInitiateAsyncClosed­
CaptionScan

imFileRef imInitiateAsync­
ClosedCaption­
ScanRec *

No

imGetNextClosedCaption imFileRef imGetNextClosed­
CaptionRec *

No

imCompleteAsyncClosed­
CaptionScan

imFileRef imCompleteAsync­
ClosedCaption­
ScanRec *

No

The following selectors are optional, useful for a subset of importers
imAnalysis imFileRef imAnalysisRec * Yes
imDataRateAnalysis imFileRef imDataRate-

AnalysisRec *
No

imGetTimeInfo8 imFileRef imTimeInfoRec8 * No
imSetTimeInfo8 imFileRef imTimeInfoRec8 * No
imGetFileAttributes imFileAttributesRec * unused
imGetMetaData imFileRef imMetaDataRec * No
imSetMetaData imFileRef imMetaDataRec * No
imGetRollCrawlInfo imRollCrawl-

InfoRec *
unused Yes

imRollCrawlRenderPage rollCrawlRender­
Rec *

unused Yes

Importers • 118Adobe Premiere Pro SDK Guide

imDeferredProcessing imDeferred­
ProcessingRec *

unused No

imGetAudioChannelLay­
out

imFileRef imGetAudioChan­
nelLayoutRec *

Yes

imGetPeakAudio imFileRef imPeakAudioRec * Yes
imQueryContentState imQueryContent­

StateRec *
unused No

imQueryStreamLabel imQueryStreamLabel­
Rec *

unused Yes

imGetIndColorSpace ColorProfileRec unused Yes
Used only in After Effects
imGetSubTypeNames (csSDK_int32) fi­

leType
imSubTypeDescrip­
tionRec **

No

imGetIndColorProfile (int) index imIndColorPro­
fileRec *

No

imQueryInputFileList imQueryInputFileL­
istRec *

unused No

Selector Descriptions

This section provides a brief overview of each selector and highlights implementation issues.
Additional implementation details are at the end of the chapter.

imInit

param1 - imImportInfoRec *
param2 - unused

Sent during application startup. Describe the importer’s capabilities in the imImportInfoRec;
all options are false by default. The similarly named flags in imIndFormatRec.flags are obsolete
and should not be used.

Set hasSetup to kPrTrue if the importer has a setup dialog, and setupOnDblClk to
kPrTrue to have that dialog display when the user double-clicks a file in the Project Panel;
Premiere throws away any preview files generated for a file imported with this setting, even if no
setup dialog is displayed.

Return imIsCacheable from imInit if a plug-in does not need to be called to initialize every
time Premiere launched. This will help reduce the time to launch the application.

Importers • 119Adobe Premiere Pro SDK Guide

Synthetic Importers

Setting noFile to kPrTrue indicates that the importer is synthetic. Set addToMenu to
kPrTrue to add the importer to the File > New menu.

Custom Importers

To create a custom importer, the following capabilities must be set. See Additional Details for
more info on custom importers.

noFile = kPrTrue;
hasSetup = kPrTrue;
canOpen = kPrTrue;
canCreate = kPrTrue;
addToMenu = imMenuNew;

imShutdown

param1 - unused
param2 - unused

Release all resources and perform any other necessary clean-up; sent when Premiere quits.

imGetIndFormat

param1 - (int) index
param2 - imIndFormatRec *

Sent repeatedly, immediately after imInit; enumerate the filetypes the plug-in supports by popu-
lating the imIndFormatRec. When finished, return imBadFormatIndex. imIndFormatRec.flags
are obsolete and should not be used.

Synthetic Importers
Because they have no file, synthetic importers only need to respond with the filetype established
in their resource. Create a separate plug-in for each synthetic file type.

imGetSupports8

param1 - unused
param2 - unused

Importers • 120Adobe Premiere Pro SDK Guide

A plug-in that supports the Premiere Pro 2.0 API (and beyond) must return malSupports8.

imGetSupports7

param1 - unused
param2 - unused

A plug-in that supports the Premiere Pro 1.0 API (and beyond) must return malSupports7.

imGetInfo8

param1 - imFileAccessRec8 *
param2 - imFileInfoRec8 *

Describe a clip, or a single stream of a clip if the clip has multiple streams. Called when a specific
file is instantiated. Importer checks file validity, optionally allocates file instance data, and de-
scribes the properties of the file being imported by populating the imFileInfoRec8.

Synthetic Importers
You can create a still frame, a movie of a set duration, or an ’infinite’ length movie, but cannot
change the properties of a synthetic file once imported.

imCloseFile

param1 - imFileRef *
param2 - (void*) PrivateData **

The specified file is no longer required; dispose of privateData. Only sent if privateData
was allocated during imGetInfo8.

imGetIndPixelFormat

param1 - (int) index
param2 - imIndPixelFormatRec *

New optional selector called to enumerate the pixel formats available for a specific file. This mes-
sage will be sent repeatedly until all formats have been returned. Pixel formats should be returned
in the preferred order that the importer supports. The Importer should return imBadFormatIn-
dex after all formats have been enumerated. imUnsupported should be returned on the first call if
only *yawn* BGRA_4444_8u is supported.

Importers • 121Adobe Premiere Pro SDK Guide

What pixel formats should you support? Keep it real. Just return the pixel format that most closely
matches the data stored in your file. If decoding to two or more formats can be done at about the
same speed, declare support for both, but favor any pixel formats that are more compact, to save
on memory and bandwidth.

imGetPreferredFrameSize

param1 - imFileRef
param2 - imPreferredFrameSizeRec *

Provide the frame sizes preferred by the importer.

imSelectClipFrameDescriptor

param1 - imFileRef
param2 - imClipFrameDescriptorRec *

New in Premiere Pro CC 2014. If the importer can provide multiple formats, describe the format
it will provide here. This allows importers to change pixel formats based on criteria like enabled
hardware and other source settings, such as HDR.

imGetSourceVideo

param1 - imFileRef
param2 - imSourceVideoRec *

Get the host an unscaled frame of video. This selector will be sent instead of imImportImage if
supportsGetSourceVideo is set to true during imGetInfo8.

imCreateAsyncImporter

param1 - imAsyncImporterCreationRec *
param2 - unused

Create an asynchronous importer object using the data provided, and store it in imAsyncIm­
porterCreationRec.

imImportImage

param1 - imFileRef
param2 - imImportImageRec *

Importers • 122Adobe Premiere Pro SDK Guide

Note: In most cases, imGetSourceVideo is the better choice. Before going down this route, read
the discussion here. Give the host a frame of video; populate the imImportImageRec buffer
with pixel data, or (if you’ve set canDraw to true during imInit) draw to the screen in the provid-
ed window using platform-specific calls to do so. You must scale the image data to fit the window;
Premiere relies on the import module for properly scaled frames.

imImportAudio7

param1 - imFileRef
param2 - imImportAudioRec7 *

Replacement for imImportAudio that uses new imAudioInfoRec7. Called to import audio us-
ing the new 32-bit float, uninterleaved audio format. Fill imImportAudioRec7->buffer
with the number of sample frames specified in imImportAudioRec7->size, starting from
imImportAudioRec7->position. Always return 32-bit float, uninterleaved samples as de-
scribed in the Universals chapter. You may use the calls in the Audio Suite to do some common
conversions.

imGetPrefs8

param1 - imFileAccessRec8 *
param2 - imGetPrefsRec *

Only sent if clip filetype uses a setup dialog within Premiere. Premiere sends this selector when
the user imports (or creates, if synthetic) a file of your type, or when double-clicking on an exist-
ing clip. You must have set hasSetup = true during imInit to receive this selector.

Storing preferences is a two step process. If the pointer in imGetPrefsRec.prefs is NULL,
set prefsLength to the size of your preferences structure and return imNoErr. Premiere
sends imGetPrefs again; display your dialog, and pass the preferences pointer back in imGet­
PrefsRec.prefs. Starting in Premiere Pro 1.5, the importer can get a frame from the timeline
beneath the current clip or timeline location. This is useful for titler plug-ins. Use the getPre-
viewFrameEx callback with the time given by TDB_TimeRecord tdbTimelocation in imGetPrefs-
Rec.

Synthetic Importers
Synthetic importers can specify the displayable name by changing the newfilename member of
imFileAccessRec8.

The first time this selector is sent, the imGetPrefsRec.timelineData, though non-null,
contains garbage and should not be used. It will only contain valid information once the user has
put the clip into the timeline, and is double-clicking on it.

Importers • 123Adobe Premiere Pro SDK Guide

Custom Importers
Custom importers should return imSetFile after successfully creating a new file, storing the
file access information in imFileAccessRec8. Premiere will use this data to then ask the im-
porter to open the file it created. See Additional Details for more information on custom import-
ers.

imOpenFile8

param1 - imFileRef *
param2 - imFileOpenRec8 *

Open a file and give Premiere its handle. This selector is sent only if canOpen was set to true
during imInit; do so if you generate child files, you need to have read and write access during the
Premiere session, or use a custom file system. If you respond to this selector, you must also re-
spond to imQuietFile and imCloseFile. You may additionally need to respond to imDeleteFile and
imSaveFile; see Additional Details. Close any child files during imCloseFile.

Importers that open their own files should specify how many files they keep open between imO­
penFile8 and imQuietFile using the new Importer File Manager Suite, if the number is not equal
to one. Importers that don’t open their own files, or importers that only open a single file should
not use this suite. Premiere’s File Manager now keeps track of the number of files held open by
importers, and limits the number open at a time by closing the least recently used files when too
many are open. On Windows, this helps memory usage, but on Mac OS this addresses a whole
class of bugs that may occur when too many files are open.

imQuietFile

param1 - imFileRef *
param2 - (void*) PrivateData **

Close the file in imFileRef, and release any hardware resources associated with it. Respond
to this selector only if canOpen was set to true during imInit. A quieted file is closed (at the OS
level), but associated privateData is maintained by Premiere. Do not deallocate private­
Data in response to imQuietFile; do so during imCloseFile.

imSaveFile8

param1 - imSaveFileRec8 *
param2 - unused

Importers • 124Adobe Premiere Pro SDK Guide

Save the file specified in imSaveFileRec8. Only sent if canOpen was set to true during im­
Init.

imDeleteFile

param1 - imDeleteFileRec *
param2 - unused

Request this selector (by setting canDelete to true during imInit) only if you have child files
or related files associated with your file. If you have only a single file per clip you do not need to
delete your own files. Numbered still file importers do not need to respond to this selector; each
file is handled individually.

imCalcSize8

param1 - imCalcSizeRec *
param2 - imFileAccessRec8 *

Called before Premiere trims a clip, to get the disk size used by a clip. This selector is called if the
importer sets imImportInfoRec.canCalcSizes to non-zero. An importer should support
this call if it uses a tree of files represented as one top-level file to Premiere. The importer should
calculate either the trimmed or current size of the file and return it. If the trimIn and duration are
set to zero, Premiere is asking for the current size of the file. If the trimIn and duration are valid
values, Premiere is asking for the trimmed size.

imCheckTrim8

param1 - imCheckTrimRec *
param2 - imFileAccessRec8 *

Called before Premiere trims a clip, to check if a clip can be trimmed at the specified boundar-
ies. imCheckTrimRec and imFileAccessRec are passed in. The importer examines the proposed
trimmed size of the file, and can change the requested in point and duration to new values if the
file can only be trimmed at certain locations (for example, at GOP boundaries in MPEG files). If
the importer changes the in and duration, the new values must include all the material requested
in the original trim request. If an importer does not need to change the in and duration, it may
either return imUnsupported, or imNoErr and simply not change the in/duration fields. If the
importer does not want the file trimmed (perhaps because the audio or video would be degraded
if trimmed at all) it can return imCantTrim and the trim operation will fail and the file will be
copied instead.

For a file with both audio and video, the selector will be sent several times. The first time, im­
CheckTrimRec will have both keepAudio and keepVideo set to a non-zero value, and the

Importers • 125Adobe Premiere Pro SDK Guide

trim boundaries will represent the entire file, and Premiere is asking if the file can be trimmed at
all. If the importer returns an error, it will not be called again. The second time, imCheckTrim­
Rec will have keepAudio set to a non-zero value, and the trim boundaries will represent the
audio in and out points in the audio timebase, and Premiere is asking if the audio can be trimmed
on these boundaries. The third time, imCheckTrimRec will have keepVideo set to a non-
zero value, and the trim boundaries will represent the video in and out points in the video time-
base, and Premiere is asking if the video can be trimmed on these boundaries. If either the video
or audio boundaries extend further than the other boundaries, Premiere will trim the file at the
furthest boundary.

imTrimFile8

param1 - imFileAccessRec8 *
param2 - imTrimFileRec8 *

Called when Premiere trims a clip. imFileAccessRec8 and imTrimFileRec8 are passed
in. imDiskFull or imDiskErr may be returned if there is an error while trimming. The
current file, inPoint, and new duration are given and a destination file path. If a file has video
and audio, the trim time is in the video’s timebase. For audio only, the trim times are in the audio
timebase. A simple callback and callbackID is passed to imTrimFile8 and imSaveFile8 that allows
plug-ins to query whether or not the user has cancelled the operation. If non-zero (and they can
be nil), the callback pointer should be called to check for cancellation. The callback function will
return imProgressAbort or imProgressContinue.

imCopyFile

param1 - imCopyFileRec *
param2 - unused

imCopyFile is sent rather than imSaveFile to importers that have set imImportInfoRec.can­
Copy when doing a copy operation using the Project Manager. The importer should maintain
data on the original file rather than the copy when it returns from the selector.

imRetargetAccelerator

param1 - imAcceleratorRec *
param2 - unused

When the Project Manager copies media and its accelerator, this selector gives an opportunity to
update the accelerator to refer to the copied media.

Importers • 126Adobe Premiere Pro SDK Guide

imQueryDestinationPath

param1 - imQueryDestinationPathRec *
param2 - unused

New in CS5. This allows the plug-in to modify the path that will be used for a trimmed clip, so the
trimmed project is written with the correct path.

imInitiateAsync ClosedCaptionScan

param1 - imFileRef
param2 - imInitiateAsyncClosedCaptionScanRec *

New in CC. Gives a chance for the importer to allocate private data to be used during the scan for
any closed captions embedded in the clip. If there are no captions, return imNoCaptions.

imGetNextClosedCaption

param1 - imFileRef
param2 - imGetNextClosedCaptionRec *

New in CC. Called iteratively, each time asking the importer for a single closed caption embedded
in the clip. After returning the last caption, return imNoCaptions to signal the end of the scan.

imCompleteAsync ClosedCaptionScan

param1 - imFileRef
param2 - imCompleteAsyncClosedCaptionScanRec *

New in CC. Called to cleanup any temporary data used while getting closed captions embedded
in the clip, and to see if the scan completed without error.

imAnalysis

param1 - imFileRef
param2 - imAnalysisRec *

Provide information about the file in the imAnalysisRec; this is sent when the user views the
Properties dialog for your file. Premiere displays a dialog with information about the file, includ-
ing the text you provide.

Importers • 127Adobe Premiere Pro SDK Guide

imDataRateAnalysis

param1 - imFileRef
param2 - imDataRateAnalysisRec *

Give Premiere a data rate analysis of the file. Sent when the user presses the Data Rate button in
the Properties dialog, and is enabled only if hasDataRate was true in the imFileInfoRec
returned during imGetInfo. Premiere generates a data rate analysis graph from the data provided.

imGetTimeInfo8

param1 - imFileRef
param2 - imTimeInfoRec8 *

Read any embedded timecode data in the file. Supercedes imGetTimeInfo.

imSetTimeInfo8

param1 - imFileRef
param2 - imTimeInfoRec8 *

Sent after a capture completes, where timecode was provided by the recorder or device control-
ler. Use this to write timecode data and timecode rate to your file. See the Universals chapter for
more information on time in Premiere. Supercedes imSetTimeInfo.

Timecode rate is important for files that have timecode, but not an implicit frame rate, or where
the sampling rate might differ from the timecode rate. For example, audio captured from a tape
uses the video’s frame rate for timecode, although its sampling rate is not equal to the timecode
rate. Another example is capturing a still from tape, which could be stamped with timecode, yet
not have a media frame rate.

imGetFileAttributes

param1 - imFileAttributesRec *

Optional. Pass back the creation date stamp in imFileAttributesRec.

imGetMetaData

param1 - imFileRef
param2 - imMetaDataRec *

Importers • 128Adobe Premiere Pro SDK Guide

Called to get a metadata chunk specified by a fourcc code. If imMetaDataRec->buffer
is null, the plug-in should set buffersize to the required buffer size and return imNoErr.
Premiere will then call again with the appropriate buffer already allocated.

imSetMetaData

param1 - imFileRef
param2 - imMetaDataRec *

Called to add a metadata chunk specified by a fourcc code.

imDeferredProcessing

param1 - imDeferredProcessingRec *
param2 - unused

Describe the current progress of the deferred processing on the clip.

imGetAudioChannelLayout

param1 - imFileRef
param2 - imGetAudioChannelLayoutRec *

New in CC. Called to get the audio channel layout in the file.

imGetPeakAudio

param1 - imFileRef
param2 - imPeakAudioRec *

Optional selector allows Premiere to get audio peak data directly from the importer. This is
used for synthetic clips longer than five minutes. Providing peak data can significantly improve
waveform rendering performance when the user views audio waveform of the clip in the Source
Monitor.

imQueryContentState

param1 - imQueryContentStateRec *
param2 - unused

Importers • 129Adobe Premiere Pro SDK Guide

New in CS5. This is used by streaming importers and folder based importers (P2, XDCAM, etc)
that have multiple files that comprise the content. If an importer doesn’t support the selector then
the host checks the last modification time for the main file.

imQueryStreamLabel

param1 - imQueryStreamLabelRec *
param2 - unused

New in CS6. This is used by stereoscopic importers to specify which stream IDs represent the left
and right eyes.

imGetSubTypeNames

param1 - (csSDK_int32) fileType
param2 - imSubTypeDescriptionRec **

New optional selector added for After Effects CS3. As of CS4, this info still isn’t used in Premiere
Pro, but is used in After Effects to display the codec name in the Project Panel. The importer
should fill in the codec name for the specific subtype fourcc provided. This selector will be sent
repeatedly until names for all subtypes have been requested. The imSubTypeDescription­
Rec must be allocated by the importer, and will be released by the plug-in host.

imGetIndColorProfile

param1 - (int) index
param2 - imIndColorProfileRec *

New in After Effects CS5.5; not used in Premiere Pro. Only sent if the importer has set imIm­
ageInfoRec.colorProfileSupport to imColorProfileSupport_Fixed. This selec-
tor is sent iteratively for the importer to provide a description of each color profile supported by
the clip. After all color profiles have been described, return a non-zero value.

imQueryInputFileList

param1 - imQueryInputFileListRec *
param2 - unused

New for After Effects CS6; not used in Premiere Pro. If an importer supports media that uses
more than a single file (i.e. a file structure with seperate files for metadata, or separate video and
audio files), this is the way the importer can specify all of its source files, in order to support
Collect Files in After Effects. In imImportInfoRec, a new member, canProvideFileL­

Importers • 130Adobe Premiere Pro SDK Guide

ist, specifies whether the importer can provide a list of all files for a copy operation. If the
importer does not implement this selector, the host will assume the media just uses a single file at
the original imported media path.

Return Codes

Return Code Reason
imNoErr Operation has completed without error.
imTooWide File dimensions too large.
imBadFile Bad file format. To defer an unsupported subtype to a lower

priority importer, return this during imOpenFile8 or imGetInfo8.
imUnsupported Unsupported selector.
imMemErr Memory error.
imOtherErr Unknown error.
imNoContent No audio or video.
imBadRate Bad audio rate.
imBadCompression Bad compression.
imBadCodec Codec not found.
imNotFlat Unflattened QuickTime movie.
imBadSndComp Bad sound compression.
imNoTimecode Timecode supported, but not found.
imMissingComponent Missing component needed to open the file.
imSaveErr Error saving file.
imDeleteErr Error deleting file.
imNotFoundErr The requested metadata chunk was not found.
imSetFile Return this from imGetPrefs8 only if you are a custom

importer and you need Premiere to alter it’s file access
information (e.g. a new path or filename is created).

imIterateStreams Return from imGetInfo8 to indicate that there are more streams
to describe. Premiere will send imGetInfo8 for the next stream.

imBadStreamIndex Return from imGetInfo8 after interating through streams to indi-
cate that there are no more streams to describe.

imCantTrim Return from imCheckTrim if the file cannot be trimmed by the
importer.

imDiskFull Return from imTrimFile8 if there is not enough space to complete
the trim operation.

imDiskErr Return from imTrimFile8 if there is a general disk or I/O error
during the trim operation.

Importers • 131Adobe Premiere Pro SDK Guide

imFileShareViolation Return from imOpenFile8 if file cannot be opened due to another
process having exclusive read access

imIterateFrameSizes Return from imGetPreferredFrameSize, to be called again to de-
scribe more frame sizes for a particular pixel format.

imMediaPending Return from imGetSourceVideo or imCreateAsyncImporter if
the importer is still processing the file and cannot return video
frames yet.

imDRMControlled Return from imOpenFile8 if the file cannot be opened because it
is under rights management.

imActivationFailed Activation of a component failed (usually due to user cancella-
tion). This is used by Premiere Elements.

imFrameNotFound New in CS4. Return if an importer could not find the requested
frame (typically used with async importers)

imBadHeader New in CS5. The file cannot be opened because of a header error
imUnsupportedCom­
pression

New in CS5. The file has a compression type that the importer
does not support

imFileOpenFailed New in CS5. The importer was unable to open the file on disk
imFileHasNoImport­
ableStreams

New in CS5. The file has no audio or video stream

imFileReadFailed New in CS5. A read from an open file failed
imUnsupportedAudi­
oFormat

New in CS5. The importer cannot import something in the audio
format

imUnsupportedVide­
oBitDepth

New in CS5. The video bit depth of this file is unsupported by the
importer

imDecompressionEr­
ror

New in CS5. The importer hit an error decompressing the audio
or video

imInvalidPrefer­
ences

New in CS5. Invalid prefs data was passed to the importer

inFileNotAvailable New in CS5. Return from imQueryContentState if the file/stream
is no longer available because it is offline or deleted

imRequiresProtect­
edContent

New in CS5.5. Return from imInit if the importer depends on a
library that has not been activated yet.

imNoCaptions New in CC. Return from imInitiateAsyncClosedCaptionScan if the
clip has no closed captions, or return from imGetNextClosedCap­
tion when there are no more captions.

imCancel Return from imGetPrefs8 if user cancels or the plug-in
cannot open the file (custom/synthetic importer).

imBadFormatIndex Return this when given an out of range format index,
and from imGetIndFormat when plug-in has no more formats
to enumerate.

Importers • 132Adobe Premiere Pro SDK Guide

imIsCacheable Return from imInit if a plug-in does not need to be called to ini-
tialize every time Premiere is launched. This will help reduce the
time to launch the application.

Structures

Structure Sent with selector
imAcceleratorRec imRetargetAccelerator
imAnalysisRec imAnalysis
imAsyncImporterCre­
ationRec

imCreateAsyncImporter

imAudioInfoRec7 imGetInfo8 (member of imFileInfoRec7)
imCalcSizeRec imCalcSize8
imCheckTrimRec imCheckTrim8
imClipFrameDescriptor­
Rec

imSelectClipFrameDescriptor

imCompleteAsyncClosed­
CaptionScanRec

imCompleteAsyncClosedCaptionScan

imIndColorProfileRec imGetIndColorProfile
imCopyFileRec imCopyFile
imDataRateAnalysisRec imDataRateAnalysis
imDeferredProcessingRec imDeferredProcessing
imDeleteFileRec imDeleteFile
imFileAccessRec8 imGetInfo8 and imGetPrefs8
imFileAttributesRec imGetFileAttributes
imFileInfoRec8 imGetInfo8
imFileOpenRec8 imOpenFile8
imFileRef imAnalysis, imDataRateAnalysis, imOpenFile8, imQuiet­

File, imCloseFile, imGetTimeInfo8, imSetTimeInfo8, imIm­
portImage, imImportAudio7

imFileSpec imGetInfo8, imGetPrefs8, imSaveFile8, imDeleteFile, and
imTrimFile8 (member of imFileAccessRec8, im­
SaveFileRec8, imDeleteFileRec, and imTrim­
FileRec8)

imFrameFormat imGetSourceVideo (member of imSourceVideoRec)
imGetNextClosedCaption­
Rec

imGetNextClosedCaption

imGetPrefsRec imGetPrefs8
imImageInfoRec imGetInfo8 (member of imFileInfoRec8)

Importers • 133Adobe Premiere Pro SDK Guide

imImportAudioRec7 imImportAudio7
imImportImageRec imImportImage
imImportInfoRec imInit
imIndFormatRec imGetIndFormat
imIndPixelFormatRec imGetIndPixelFormat
imInitiateAsyncClosed­
CaptionScanRec

imInitiateAsyncClosedCaptionScan

imMetaDataRec imGetMetaData and imSetMetaData
imPeakAudioRec imGetPeakAudio
imPreferredFrameSizeRec imGetPreferredFrameSize
imQueryContentStateRec imQueryContentState
imQueryDestination­
PathRec

imQueryDestinationPath

imQueryInputFileListRec imQueryInputFileList
imQueryStreamLabelRec imQueryStreamLabel
imRollCrawlInfoRec imGetRollCrawlInfo
imRollCrawlRenderRec imRollCrawlRenderPage
imSaveFileRec8 imSaveFile8
imSourceVideoRec imGetSourceVideo
imSubTypeDescriptionRec imGetSubTypeNames
imTimeInfoRec8 imGetTimeInfo8 and imSetTimeInfo8
imTrimFileRec8 imTrimFile8

Structure Descriptions

imAcceleratorRec

Selector: imRetargetAccelerator

Describes the path to the new media and new accelerator created when the Project Manager cop-
ies media and its accelerator.

typedef struct {
 const prUTF16Char *inOriginalPath;
 const prUTF16Char *inAcceleratorPath;
} imAcceleratorRec;

Importers • 134Adobe Premiere Pro SDK Guide

inOriginalPath The unicode path and name of the copied media.
inAcceleratorPath The unicode path and name of the copied accelerator.

imAnalysisRec

Selector: imAnalysis

Sending back analysis data is a two step process. First, set buffersize to the size of your char-
acter buffer and return imNoErr. Premiere will immediately send imAnalysis again; populate the
buffer with text. Previously-stored preferences and privateData are returned in this structure.

typedef struct {
 void *privatedata;
 void *prefs;
 csSDK_int32 buffersize;
 char *buffer;
 csSDK_int32 *timecodeFormat;
} imAnalysisRec;

privatedata Instance data from imGetInfo8 or imGetPrefs8.
prefs Clip Source Settings data from imGetPrefs8 (setup dialog info).
buffersize Set to the desired size and return imNoErr to Premiere, which will

re-size and call the plug-in again with the imGetPrefs8 selector.
buffer Text buffer. Terminate lines with line endings (CR and LF).
timecodeFormat Preferred timecode format, sent by the host.

imAsyncImporterCreationRec

Selector: imCreateAsyncImporter

Create an asynchronous importer object using the data provided, and store it here.

typedef struct {
 void *inPrivateData;
 void *inPrefs;
 AsyncImporterEntry outAsyncEntry;
 void *outAsyncPrivateData;
}

inPrivateData Instance data from imGetInfo8 or imGetPrefs8.
inPrefs Clip Source Settings from imGetPrefs8 (setup dialog info).

Importers • 135Adobe Premiere Pro SDK Guide

outAsyncEntry Provide the entry point for async selectors sent to the asynchronous
importer object.

outAsyncPrivate­
Data

PrivateData for the asynchronous importer object.

imAudioInfoRec7

Selector: imGetInfo8 (member of imFileInfoRec8)

Audio data properties of the file (or of the data you will generate, if synthetic).

typedef struct {
 csSDK_int32 numChannels;
 float sampleRate;
 PrAudioSampleType sampleType;
}

numChannels Number of audio channels in the audio stream. Either 1, 2, or 6.
sampleRate In hertz.
sampleType This is for informational use only, to disclose the format of the audio on disk,

before it is converted to 32-bit float, uninterleaved, by the importer. The au-
dio sample types are listed in the Universals chapter.

imCalcSizeRec

Selector: imCalcSize8

Asks the importer for an estimate of disk space used by the clip, given the provided trim boundar-
ies.

typedef struct {
 void *privatedata;
 void *prefs;
 csSDK_int32 trimIn;
 csSDK_int32 duration;
 prInt64 sizeInBytes;
 csSDK_int32 scale;
 csSDK_int32 sampleSize;
} imCalcSizeRec;

privatedata Instance data gathered from imGetInfo8 or imGetPrefs8.
prefs Clip Source Settings gathered from imGetPrefs8 (setup dialog info).

Importers • 136Adobe Premiere Pro SDK Guide

trimIn In point of the trimmed clip the importer should calculate the size for, in
the timebase specified by scale over sampleSize.

duration Duration of the trimmed clip the importer should calculate the size for.
If 0, then the importer should calculate the size of the untrimmed clip.

sizeInBytes Return the calculated size in bytes.
scale The frame rate of the video clip, represented as scale over sampleSize.
sampleSize

imCheckTrimRec

Selector: imCheckTrim8

Provides the requested trim boundaries to the importer, and allows adjusted trim boundaries to
be passed back to Premiere.

typedef struct {
 void *privatedata;
 void *prefs;
 csSDK_int32 trimIn;
 csSDK_int32 duration;
 csSDK_int32 keepAudio;
 csSDK_int32 keepVideo;
 csSDK_int32 newTrimIn;
 csSDK_int32 newDuration;
 csSDK_int32 scale;
 csSDK_int32 sampleSize;
} imCheckTrimRec;

privatedata Instance data gathered from imGetInfo8 or imGetPrefs8.
prefs Clip Source Settings gathered from imGetPrefs8 (setup dialog info).
trimIn Requested in point of the trimmed clip, in the timebase specified by scale

over sampleSize.
duration Requested duration. If 0, then the request is to leave the clip untrimmed,

and at the current duration
keepAudio If non-zero, the request is to keep the audio in the trimmed result.
keepVideo If non-zero, the request is to keep the video in the trimmed result.
newTrimIn Return the acceptable in point of the trimmed clip. It must be at or be-

fore the requested in point.
newDuration Return the acceptable duration. newTrimIn + newDuration must be at or

after the trimIn + duration.
scale The frame rate of the video clip, represented as scale over sampleSize.
sampleSize

Importers • 137Adobe Premiere Pro SDK Guide

imClipFrameDescriptorRec

Selector: imSelectClipFrameDescriptor

Based on the request in inDesiredClipFrameDescriptor and the importer’s Source
Settings, modify outBestFrameDescriptor as needed to describe what format the import-
er will provide.

typedef struct
{
 void* inPrivateData;
 void* inPrefs;
 ClipFrameDescriptor inDesiredClipFrameDescriptor;
 ClipFrameDescriptor outBestFrameDescriptor;
} imClipFrameDescriptorRec;

inPrivatedata Instance data gathered from imGetInfo8 or imGetPrefs8.
inPrefs Clip Source Settings gathered from imGetPrefs8 (setup dia-

log info).
inDesiredClipFrameDe­
scriptor

Requested frame properties, as described by the host.
The ClipFrameDescriptor struct is defined in
PrSDKImporterShared.h.

outBestFrameDescriptor Frame properties to be produced, filled in with initial
guesses

imCompleteAsync ClosedCaptionScanRec

Selector: imCompleteAsyncClosedCaptionScan

This structure is passed to provide one last chance to cleanup and dispose of inAsyncCap­
tionScanPrivateData, and to mark whether the closed caption scan completed without
error.

typedef struct
{
 void* inPrivateData;
 const void* inPrefs;
 void* inAsyncCaptionScanPrivateData;
 prBool inScanCompletedWithoutError;
} imCompleteAsyncClosedCaptionScanRec;

inPrivatedata Instance data gathered from imGetInfo8 or imGetPrefs8.

Importers • 138Adobe Premiere Pro SDK Guide

inPrefs Clip Source Settings gathered from imGetPrefs8 (setup dialog
info).

inAsyncCaption­
ScanPrivateData

Cleanup and dispose of any data here that was allocated in imIni­
tiateAsyncClosedCaptionScan or imGetNextClosedCaption. This
data should not be accessed after returning from this call.

inScanCompleted­
WithoutError

Set to true if no error.

imIndColorProfileRec

Selector: imGetIndColorProfile

Deprecated as of 13.0. Describes a color profile supported by a clip. The first time imGetIndColor­
Profile is sent, inDestinationBuffer will be NULL, and ioBufferSize will be 0. Set
ioBufferSize to the required size for the buffer, and the host will allocate the memory and
call the importer again, with a valid inDestinationBuffer, and ioBufferSize set to
the value just provided by the importer.

typedef struct {
 void *inPrivateData;
 csSDK_int32 ioBufferSize;
 void *inDestinationBuffer;
 PrSDKString outName;
} imIndColorProfileRec;

imCopyFileRec

Selector: imCopyFile

Describes how to copy a clip. Also provides a callback to update the progress bar and check if the
user has cancelled.

typedef struct {
 void *inPrivateData;
 csSDK_int32 *inPrefs;
 const prUTF16Char *inSourcePath;
 const prUTF16Char *inDestPath;
 importProgressFunc inProgressCallback;
 void *inProgressCallbackID;
} imTrimFileRec;

inPrivateData Instance data gathered during imGetInfo8 or imGetPrefs8.

Importers • 139Adobe Premiere Pro SDK Guide

inPrefs Clip Source Settings gathered during imGetPrefs8 (setup dia-
log).

inSourcePath Full unicode path of the source file.
inDestPath Full unicode path of the destination file.
inProgressCallback importProgressFunc callback to call repeatedly to pro-

vide progress and to check for cancel by user. May be a NULL
pointer, so make sure the function pointer is valid before call-
ing.

inProgressCallbackID Pass to progressCallback.

imDataRateAnalysisRec

Selector: imDataRateAnalysis

Specify the desired buffersize, return to Premiere with imNoErr; upon the next call fill buf-
fer with imDataSamples, and specify a base data rate for audio (if any). This structure is used
like imAnalysisRec.

typedef struct {
 void *privatedata;
 void *prefs;
 csSDK_int32 buffersize;
 char *buffer;
 csSDK_int32 baserate;
} imDataRateAnalysisRec;

privatedata Instance data gathered from imGetInfo8 or imGetPrefs8.
prefs Clip Source Settings gathered from imGetPrefs8 (setup dialog info).
buffersize The size of the buffer you request from Premiere prior to passing data

back data in buffer.
buffer Pointer to the analysis buffer to be filled with

imDataSamples (see structure below).
baserate Audio data rate (bytes per second) of the file.

typedef struct {
 csSDK_uint32 sampledur;
 csSDK_uint32 samplesize;
} imDataSample;

sampledur Duration of one sample in video timebase, in samplesize increments;
set the high bit if this is a keyframe.

samplesize Size of this sample in bytes.

Importers • 140Adobe Premiere Pro SDK Guide

imDeferredProcessingRec

Selector: imDeferredProcessing

Describes the current progress of the deferred processing on the clip referred to by inPrivateData.

typedef struct {
 void *inPrivateData;
 float outProgress;
 char outInvalidateFile;
 char outCallAgain;
} imDeferredProcessingRec;

inPrivateData Instance data gathered from imGetInfo8 or imGetPrefs8.
outProgress Set this to the current progress, from 0.0 to 1.0.
outInvalidateFile The importer has updated information about the file.
outCallAgain Set this to true to request that the importer be called again immedi-

ately.

imDeleteFileRec

Selector: imDeleteFile

Describes the file to be deleted.

typedef struct {
 csSDK_int32 filetype;
 const prUTF16Char deleteFile;
} imDeleteFileRec;

filetype The file’s unique four character code, defined in the IMPT resource
deleteFile Specifies the name (and path) of the file to be deleted.

imFileAccessRec8

Selectors: imGetInfo8 and imGetPrefs8

Describes the file being imported.

typedef struct {
 void *importID;
 csSDK_int32 filetype;

Importers • 141Adobe Premiere Pro SDK Guide

 const prUTF16Char *filepath;
 imFileRef fileref;
 PrMemoryPtr newfilename;
} imFileAccessRec;

importID Unique ID provided by Premiere. Do not modify!
filetype The file’s unique four character code, defined in the IMPT resource.
filepath The unicode file path and name.
fileref A Windows HANDLE. Premiere does not overload this value by using it

internally, although setting it to the constant kBadFileRef may cause
Premiere to think the file is closed. This value is always valid.

newfilename If the file is synthetic, the importer can specify the displayable name here
as a prUTF16Char string during imGetPrefs8.

imFileAttributesRec

Selector: imGetFileAttributes

New in Premiere Pro 3.1. Provide the clip creation date.

typedef struct {
 prDateStamp creationDateStamp;
 csSDK_int32 reserved[40];
} imFileAttributesRec;

creationDateStamp Structure to store when the clip was created

imFileInfoRec8

Selector: imGetInfo8

Describes the clip, or the stream with the ID streamIdx. Set the clip or stream attributes from
the file header or data source. Create and store any privateData.

When a synthetic clip is created, and the user provides the desired resolution, frame rate, pixel
aspect ratio, and audio sample rate in the New Synthetic dialog, these values will be pre-initialized
by Premiere.

If importing stereoscopic footage, import the left-eye video channel for streamID 0, and the right-
eye video channel for streamID 1.

typedef struct {

Importers • 142Adobe Premiere Pro SDK Guide

 char hasVideo;
 char hasAudio;
 imImageInfoRec vidInfo;
 csSDK_int32 vidScale;
 csSDK_int32 vidSampleSize;
 csSDK_int32 vidDuration;
 imAudioInfoRec7 audInfo;
 PrAudioSample audDuration;
 csSDK_int32 accessModes;
 void *privatedata;
 void *prefs;
 char hasDataRate;
 csSDK_int32 streamIdx;
 char streamsAsComp;
 prUTF16Char streamName[256];
 csSDK_int32 sessionPluginID;
 char alwaysUnquiet;
 char unused;
 prUTF16Char filePath[2048];
 char canProvidePeakData;
 char mayBeGrowing;
} imFileInfoRec8;

hasVideo If non-zero, the file contains video.
hasAudio If non-zero, the file contains audio.
vidInfo If there is video in the file, fill out the imImageInfoRec structure

(e.g. height, width, alpha info, etc.).
vidScale The frame rate of the video, represented as scale over sampleSize.
vidSampleSize
vidDuration The total number of frames of video, in the video timebase.
audInfo If there is audio in the file, fill out the imAudioInfoRec7 struc-

ture.
audDuration The total number of audio sample frames.

Importers • 143Adobe Premiere Pro SDK Guide

accessModes The access mode of this file. Use one of the following constants:
kRandomAccessImport - This file can be read by random access
(default)
kSequentialAudioOnly - When accessing audio, only sequen-
tial reads allowed (for variable bit rate files)
kSequentialVideoOnly - When accessing video, only sequen-
tial reads allowed
kSequentialOnly - Both sequential audio and video
kSeparateSequentialAudio - Both random access and
sequential access. This setting allows audio to be retrieved for scrub-
bing or playback even during audio conforming.

privatedata Private instance data. Allocate a handle using Premiere’s memory
functions and store it here. Premiere will return the handle with sub-
sequent selectors.

prefs Clip Source Settings data gathered from imGetPrefs8 (setup dialog
info). When a synthetic clip is created using File > New, imGetPrefs8
is sent before imGetInfo8, so this settings structure will already be
valid.

hasDataRate If set, the importer can read or generate data rate
information for this file and will be sent imDataRateAnalysis.

streamIdx The Premiere-specified stream index number. Only useful if clip uses
multiple streams.

streamsAsComp If multiple streams and this is stream zero, indicate whether to im-
port as a composition or multiple clips.

streamName Optional. The unicode name of this stream if there are multiple
streams. New in Premiere Pro 3.1, an importer may use this to set the
clip name based on metadata rather than the filename. The importer
should set imImportInfoRec.canSupplyMetadataClip­
Name to true, and fill out the name here.

sessionPluginID This ID should be used in the File Registration Suite for registering
external files (such as textures, logos, etc) that are used by an im-
porter instance but do not appear as footage in the Project Window.
Registered files will be taken into account when trimming or copy-
ing a project using the Project Manager. The sessionPluginID is valid
only for the call that it is passed on.

alwaysUnquiet Set to non-zero to tell Premiere if the clip should always be unquieted
immediately when the application regains focus.

filepath Added in Premiere Pro 4.1. For clips that have audio in files separate
from the video file, set the filename here, so that UMIDs can properly
be generated when exporting sequences to AAF.

Importers • 144Adobe Premiere Pro SDK Guide

canProvidePeak­
Data

New in Premiere Pro CS6. This allows an importer to toggle whether
or not it wants to provide peak audio data on a clip-by-clip basis. It
defaults to the setting set in imImportInfoRec.canProvide­
PeakAudio.

mayBeGrowing New in Premiere Pro CS6.0.2. Set to non-zero if this clip is growing
and should be refreshed at the interval set in the Media Preferences.

imFileOpenRec8

Selector: imOpenFile8

The file Premiere wants the importer to open.

typedef struct {
 imFileAccessRec8 fileinfo;
 void *privatedata;
 csSDK_int32 reserved;
 PrFileOpenAccess inReadWrite;
 csSDK_int32 inImporterID;
 csSDK_size_t outExtraMemoryUsage;
 csSDK_int32 inStreamIdx;
} imFileOpenRec8;

fileinfo imFileAccessRec8 describing the incoming file.
privatedata Instance data gathered from imGetInfo8 or imGetPrefs8.
reserved Do not use.
inReadWrite The file should be opened with the access mode specified:

Either
kPrOpenFileAccess_ReadOnly or
kPrOpenFileAccess_ReadWrite

inImporterID Can be used as the ID for calls in the PPix Cache Suite.
outExtraMemoryUsage New in CS5. If the importer uses memory just by being open,

which cannot otherwise be registered in the cache, put the size
in bytes in this field.

inStreamIdx New in CS6. If the clip has multiple streams (for stereoscopic
video or otherwise), this ID differentiates between them.

imFileRef

Selectors: imAnalysis, imDataRateAnalysis, imOpenFile8, imQuietFile, imCloseFile, imGetTimeIn­
fo8, imSetTimeInfo8, imImportImage, imImportAudio7

Importers • 145Adobe Premiere Pro SDK Guide

A file HANDLE on Windows, or a void* on MacOS. imFileRef is also a member of im­
FileAccessRec. Use OS-specific functions, rather than ANSI file functions, when manipulat-
ing imFileRef.

imFrameFormat

Selector: imGetSourceVideo (member of imSourceVideoRec)

Describes the frame dimensions and pixel format.

typedef struct {
 csSDK_int32 inFrameWidth;
 csSDK_int32 inFrameHeight;
 PrPixelFormat inPixelFormat;
} imFrameFormat;

inFrameWidth The frame dimensions requested.
inFrameHeight
inPixelFormat The pixel format of the frame requested.

imGetAudioChannelLayoutRec

Selector: imGetAudioChannelLayout

The importer should label each audio channel in the clip being imported. If no labels are speci-
fied, the channel layout will be assumed to be discrete.

typedef struct {
 void* inPrivateData;
 PrAudioChannelLabel outChannelLabels[kMaxAudioChannelCount];
} imGetAudioChannelLayoutRec;

inPrivatedata Instance data gathered from imGetInfo8 or imGetPrefs8.
outChannelLabels A valid audio channel label should be assigned for each channel

in the clip. Labels are defined in the Audio Suite.

imGetNextClosedCaptionRec

Selector: imGetNextClosedCaption

This structure provides private data allocated in imInitiateAsyncClosedCaptionScan, and should
be filled out to pass back a closed caption, it’s time, format, size, and overall progress in the closed

Importers • 146Adobe Premiere Pro SDK Guide

caption scan.

typedef struct {
 void* inPrivateData;
 const void* inPrefs;
 void* inAsyncCaptionScanPrivateData;
 float outProgress;
 csSDK_int64 outScale;
 csSDK_int64 outSampleSize;
 csSDK_int64 outPosition;
 PrClosedCaptionFormat outClosedCaptionFormat;
 PrMemoryPtr outCaptionData;
 prUTF8Char outTTMLData[kTTMLBufferSize];
 csSDK_size_t ioCaptionDataSize;
} imGetNextClosedCaptionRec;

inPrivatedata Instance data gathered from imGetInfo8 or imGetPrefs8.
inPrefs Clip Source Settings gathered from imGetPrefs8 (setup dialog

info).
inAsyncCaption­
ScanPrivateData

This provides any private data that was allocated in imIniti­
ateAsyncClosedCaptionScan.

outProgress Update this value to denote the current progress iterating through
all the captions. Valid values are between 0.0 and 1.0.

outScale The timebase of outPosition, represented as scale over
sampleSize.outSampleSize

outPosition The position of the closed caption.
outClosedCaption­
Format

The format of the closed captions. One of the following:
kPrClosedCaptionFormat_Undefined
kPrClosedCaptionFormat_CEA608 - CEA-608 byte
stream
kPrClosedCaptionFormat_CEA708 - CEA-708 byte
stream (may contain 608 data wrapped in 708)
kPrClosedCaptionFormat_TTML - W3C TTML string
that conforms to the W3C Timed Text Markup Language
(TTML) 1.0: (http://www.w3.org/TR/ttaf1-dfxp/) or optionally
conforming to SMPTE ST 2052-1:2010: (http://store.smpte.org/
product-p/st%202052-1-2010.htm), or optionally conforming to
EBU Tech 3350 (http://tech.ebu.ch/webdav/site/tech/shared/tech/
tech3350.pdf).
If the TTML string contains tunneled data (e.g. CEA-608 data),
then it is preferred that the plug-in provide that through the ap-
propriate byte stream format (e.g. kPrClosedCaptionFor­
mat_CEA608).

Importers • 147Adobe Premiere Pro SDK Guide

outCaptionData Memory location to where the plug-in should write the closed
caption bytes, if providing CEA-608 or CEA-708.

outTTMLData UTF-8 String of valid W3C TTML data. The entire string may
be split into substrings (e.g. line by line) and the host will concat-
enate and decode them (only used when outCaptionData is
kPrClosedCaptionFormat_TTML).

ioCaptionDataSize Size of outCaptionData buffer (in bytes) allocated from the
host. The importer should set this variable to the actual number
of bytes that were written to outCaptionData, or the length
of the string (characters, not bytes) pointed by outTTMLData.

imGetPrefsRec

Selector: imGetPrefs8

Contains settings/prefs data gathered from (or defaults to populate) a setup dialog. If you are
creating media, you can may generate a video preview that includes the background frame from
the timeline.

typedef struct {
 char *prefs;
 csSDK_int32 prefsLength;
 char firstTime;
 PrTimelineID timelineData;
 void *privatedata;
 TDB_TimeRecord tdbTimelineLocation;
 csSDK_int32 sessionPluginID;
 csSDK_int32 imageWidth;
 csSDK_int32 imageHeight;
 csSDK_uint32 pixelAspectNum;
 csSDK_uint32 pixelAspectDen;
 csSDK_int32 vidScale;
 csSDK_int32 vidSampleSize;
 float sampleRate;
} imGetPrefsRec;

prefs A pointer to a private structure (which you allocate) for stor-
ing Clip Source Settings.

prefsLength Prior to storing anything in the prefs member, set pref­
sLength to the size of your structure and return imNoErr;
Premiere will re-size and call the plug-in again with imGet­
Prefs8.

Importers • 148Adobe Premiere Pro SDK Guide

firstTime If set, imGetPrefs8 is being sent for the first time. Instead,
check to see if prefs has been allocated. If not, imGetPrefs8
is being sent for the first time. Set up default values for the
prefsLength buffer and present any setup dialog.

timelineData Can be passed to getPreviewFrameEx callback along
with tdbTimelineLocation to get a frame from the
timeline beneath the current clip or timeline location. This is
useful for titler plug-ins.

privatedata Private instance data. Allocate a handle using Premiere’s
memory functions and store it here, if not already allocated in
imGetInfo8. Premiere will return the handle with subsequent
selectors.

tdbTimelineLocation Can be passed to getPreviewFrameEx callback along
with timelineData to get a frame from the timeline be-
neath the current clip or timeline location. This is useful for
titler plug-ins.

sessionPluginID This ID should be used in the File Registration Suite for
registering external files (such as textures, logos, etc) that are
used by a importer instance but do not appear as footage in
the Project Window. Registered files will be taken into ac-
count when trimming or copying a project using the Project
Manager. The sessionPluginID is valid only for the call
that it is passed on.

imageWidth New in CS5. The native resolution of the video.
imageHeight
pixelAspectNum New in CS5. The pixel aspect ratio of the video.
pixelAspectDen
vidScale New in CS5. The frame rate of the video, represented as scale

over sampleSize.vidSampleSize
sampleRate New in CS5. Audio sample rate.

imImageInfoRec

Selector: imGetInfo8 (member of imFileInfoRec8)

Describes the video to be imported.

typedef struct {
 csSDK_int32 imageWidth;
 csSDK_int32 imageHeight;
 csSDK_uint16 pixelAspectV1;
 csSDK_uint16 depth;
 csSDK_int32 subType;

Importers • 149Adobe Premiere Pro SDK Guide

 char fieldType;
 char fieldsStacked;
 char reserved_1;
 char reserved_2;
 char alphaType;
 matteColRec matteColor;
 char alphaInverted;
 char isVectors;
 char drawsExternal;
 char canForceInternalDraw;
 char dontObscure;
 char isStill;
 char noDuration;
 char reserved_3;
 csSDK_uint32 pixelAspectNum;
 csSDK_uint32 pixelAspectDen;
 char isRollCrawl;
 char reservedc[3];
 csSDK_int32 importerID;
 csSDK_int32 supportsAsyncIO;
 csSDK_int32 supportsGetSourceVideo;
 csSDK_int32 hasPulldown;
 csSDK_int32 pulldownCadence;
 csSDK_int32 posterFrame;
 csSDK_int32 canTransform;
 csSDK_int32 interpretationUncertain;
 csSDK_int32 colorProfileSupport;
 PrSDKString codecDescription;
 csSDK_int32 colorSpaceSupport;
 csSDK_int32 reserved[15];
} imImageInfoRec;

Plug-in Info
importerID Can be used as the ID for calls in the PPix Cache Suite.
supportsAsyncIO Set this to true if the importer supports imCreateAsyncImporter

and ai* selectors.
supportsGet-
SourceVideo

Set this to true if the importer supports the imGetSourceVideo
selector.

Bounds Info
imageWidth Frame width in pixels.
imageHeight Frame height in pixels.

Importers • 150Adobe Premiere Pro SDK Guide

pixelAspectNum The pixel aspect ratio numerator and denominator. For synthetic
importers, these are by default the PAR of the project. Only set
this if you need a specific PAR for the geometry of the synthe-
sized footage to be correct.

pixelAspectDen

Time Info
isStill If set, the file contains a single frame, so only one frame will be

cached.
noDuration One of the following:

imNoDurationFalse
imNoDurationNoDefault
imNoDurationStillDefault - use the default duration for

stills, as set by the user in the Preferences
imNoDurationNoDefault - the importer will supply it’s

own duration

This is primarily for synthetic clips, but can be used for import-
ing non-sequential still images.

isRollCrawl Set to non-zero value to specify this clip is a rolling or crawling
title. This allows a player to optionally use the RollCrawl Suite to
get sections of this title for real-time playback.

hasPulldown Set this to true if the clip contains NTSC film footage with 3:2
pulldown.

pulldownCadence Set this to the enumerated value that describes the pulldown of
the clip:

importer_PulldownPhase_NO_PULLDOWN

2:3 cadences
importer_PulldownPhase_WSSWW
importer_PulldownPhase_SSWWW
importer_PulldownPhase_SWWWS
importer_PulldownPhase_WWWSS
importer_PulldownPhase_WWSSW

24pa cadences
importer_PulldownPhase_WWWSW
importer_PulldownPhase_WWSWW
importer_PulldownPhase_WSWWW
importer_PulldownPhase_SWWWW
importer_PulldownPhase_WWWWS

posterFrame New in Premiere Pro CS3. Poster frame number to be displayed.
If not specified, the poster frame will be the first frame of the clip.

Importers • 151Adobe Premiere Pro SDK Guide

Format Info
depth Bits per pixel. This currently has no effect and should be left

unchanged.
subType The four character code of the file’s codec; associates files with

MAL plug-ins. For uncompressed files, set to imUncom­
pressed.

fieldType One of the following:

prFieldsNone
prFieldsUpperFirst
prFieldsLowerFirst
prFieldsUnknown

fieldsStacked Fields are present, and not interlaced.
alphaType Used when depth is 32 or greater. One of the following:

alphaNone - no alpha channel (the default)
alphaStraight - straight alpha channel
alphaBlackMatte - premultiplied with black
alphaWhiteMatte - premultiplied with white
alphaArbitrary - premultiplied with the color specified in

matteColor
alphaOpaque - for video with alpha channel prefilled to

opaque. This gives Premiere the opportunity to make an
optimization by skipping the fill to opaque that would
otherwise be performed if alphaNone was set.

matteColor Newly used in Premiere Pro CS3. Used to specify matte color if
alphaType is set to alphaArbitrary.

alphaInverted If non-zero, alpha is treated as inverted (e.g. black becomes trans-
parent).

canTransform Set to non-zero value to specify this importer handles resolution
independent files and can apply a transform matrix. The matrix
will be passed during the import request in imImportImag­
eRec.transform. This code path is currently not called by
Premiere Pro. After Effects uses this call to import Flash video.

interpretationUn­
certain

Use an ‘or’ operator to combine any of the following flags:

imPixelAspectRatioUncertain
imFieldTypeUncertain
imAlphaInfoUncertain
imEmbeddedColorProfileUncertain

Importers • 152Adobe Premiere Pro SDK Guide

colorProfileSupport Deprecated as of 13.0.
New in CS5.5. Set to imColorProfileSupport_Fixed to
support color management. If the importer is uncertain, it should
use interpretationUncertain above instead.

codecDescription Text description of the codec in use.
ColorProfileRec New in 13.0; describes the color profile being used by the import-

er, with this media.

Unused
pixelAspectV1 Obsolete. Maintained for backwards compatability. Plug-ins writ-

ten for the Premiere 6.x or Premiere Pro API should use pix­
elAspectNum and pixelAspectDen.

isVectors Use canTransform instead.
drawsExternal
canForceInternal­
Draw
dontObscure

imImportAudioRec7

Selector: imImportAudio7

Describes the audio samples to be returned, and contains an allocated buffer for the importer to
fill in. Provide the audio in 32-bit float, uninterleaved audio format.

typedef struct {
 PrAudioSample position;
 csSDK_uint32 size;
 float **buffer;
 void *privatedata;
 void *prefs;
} imImportAudioRec7;

position In point, in audio sample frames. The importer should save the out point of
the request in privatedata, because if position is less than zero, then the
audio request is sequential, which means the importer should return con-
tiguous samples from the last imImportAudio7 call.

size The number of audio sample frames to import.
buffer An array of buffers, one buffer for each channel, with length specified in

size. These buffers are allocated by the host application, for the plug-in to
fill in with audio data.

Importers • 153Adobe Premiere Pro SDK Guide

privatedata Instance data gathered from imGetInfo8 or imGetPrefs8.
prefs Clip Source Settings data gathered from imGetPrefs8 (setup dialog info).

imImportImageRec

Selector: imImportImage

Describes the frame to be returned.

typedef struct {
 csSDK_int32 onscreen;
 csSDK_int32 dstWidth;
 csSDK_int32 dstHeight;
 csSDK_int32 dstOriginX;
 csSDK_int32 dstOriginY;
 csSDK_int32 srcWidth;
 csSDK_int32 srcHeight;
 csSDK_int32 srcOriginX;
 csSDK_int32 srcOriginY;
 csSDK_int32 unused2;
 csSDK_int32 unused3;
 csSDK_int32 rowbytes;
 char *pix;
 csSDK_int32 pixsize;
 PrPixelFormat pixformat;
 csSDK_int32 flags;
 prFieldType fieldType;
 csSDK_int32 scale;
 csSDK_int32 sampleSize;
 csSDK_int32 in;
 csSDK_int32 out;
 csSDK_int32 pos;
 void *privatedata;
 void *prefs;
 prRect alphaBounds;
 csSDK_int32 applyTransform;
 float transform[3][3];
 prRect destClipRect;

} imImportImageRec;

Bounds Info
dstWidth Width of the destination rectangle (in pixels).

Importers • 154Adobe Premiere Pro SDK Guide

dstHeight Height of the destination rectangle (in pixels).
dstOriginX Origin X point (0 indicates the frame is drawn offscreen).
dstOriginY Origin Y point (0 indicates the frame is drawn offscreen).
srcWidth The same number returned as dstWidth.
srcHeight The same number returned as dstHeight.
srcOriginX The same number returned as dstOriginX.
srcOriginY The same number returned as dstOriginY.

Frame Info
rowbytes The number of bytes in a single row of pixels.
pix Pointer to a buffer into which the importer should draw. Allocated

based on information from the imGetInfo8.
pixsize The number of pixels. rowbytes * height.
pixformat The pixel format Premiere requests.
flags imDraftMode - Draw quickly if possible, using a faster and pos-

sibly less accurate algorithm. This may be passed when playing from
the timeline.
imSamplesAreFields - Most importers will ignore as Premiere
already scales in/out/scale to account for fields, but if you need to
know that this has occurred (because maybe you measure something
in ‘frames’), check this flag. Also, may we suggest considering mea-
suring in seconds instead of frames?

fieldType If the importer can swap fields, it should render the frame with the
given field dominance: either
imFieldsUpperFirst or imFieldsLowerFirst.

scale The frame rate of the video, represented as scale over sampleSize.
sampleSize
in In point, based on the timebase defined by scale over sampleSize..
out Out point, based on the timebase defined by scale over sampleSize..
pos Import position, based on the above timebase. API bug: Synthetic

and custom importers will always receive zero. Thus, adjusting the in
point on the timeline will not offset the in point.

privatedata Instance data gathered during imGetInfo or imGetPrefs.
prefs Clip Source Settings data gathered during imGetPrefs (setup dialog

info).
alphaBounds This is the rect outside of which the alpha is always 0. Simply do not

alter this field if the alpha bounds match the destination bounds. If
set, the alpha bounds must be contained by the destination bounds.
This is only currently used when a plug-in calls ppixGetAlph­
aBounds, and not currently used by any native plug-ins.

Importers • 155Adobe Premiere Pro SDK Guide

applyTransform New in After Effects CS3. Not currently provided by Premiere. If
non-zero, the host is requesting that the importer apply the transform
specified in transform and destClipRect before returning the
resulting image in pix.

transform New in After Effects CS3. Not currently provided by Premiere. The
source to destination transform matrix.

destClipRect New in After Effects CS3. Not currently provided by Premiere.
Destination rect inside the bounds of the pix buffer.

imImportInfoRec

Selector: imInit

Describes the importer’s capabilities to Premiere.

typedef struct {
 csSDK_uint32 importerType;
 csSDK_int32 canOpen;
 csSDK_int32 canSave;
 csSDK_int32 canDelete;
 csSDK_int32 canResize;
 csSDK_int32 canDoSubsize;
 csSDK_int32 canDoContinuousTime;
 csSDK_int32 noFile;
 csSDK_int32 addToMenu;
 csSDK_int32 hasSetup;
 csSDK_int32 dontCache;
 csSDK_int32 setupOnDblClk;
 csSDK_int32 keepLoaded;
 csSDK_int32 priority;
 csSDK_int32 canAsync;
 csSDK_int32 canCreate;
 csSDK_int32 canCalcSizes;
 csSDK_int32 canTrim;
 csSDK_int32 avoidAudioConform;
 prUTF16Char *acceleratorFileExt;
 csSDK_int32 canCopy;
 csSDK_int32 canSupplyMetadataClipName;
 csSDK_int32 private;
 csSDK_int32 canProvidePeakAudio;
 csSDK_int32 canProvideFileList;
 csSDK_int32 canProvideClosedCaptions;
 prPluginID fileInfoVersion;

Importers • 156Adobe Premiere Pro SDK Guide

} imImportInfoRec;

Screen Info
noFile If set, this is a synthetic importer. The file reference will be zero.
addToMenu If set to imMenuNew, the importer will appear in the File > New

menu.
canDoContinuousTime If set, the importer can render frames at arbitrary times and there

is no set timecode. A color matte generator or a titler would set
this flag.

canCreate If set, Premiere will treat this synthetic importer as if it creates
files on disk to be referenced for frames and audio. See Additional
Details for more information on custom importers.

File handling flags
canOpen If set, the importer handles open and close operations. Set if the

plug-in needs to be called to handle imOpenFile, imQuietFile, and
imCloseFile.

canSave If set, the importer handles File > Save and File > Save As after a
clip has been captured and must handle the imSaveFile selector.

canDelete If set, the importer can delete its own files. The plug-in must
handle the imDeleteFile selector.

canCalcSizes If set, the importer can calculate the disk space used by a clip
during imCalcSize. An importer should support this call if it uses
a tree of files represented as one top-level file to Premiere.

canTrim If set, the importer can trim files during imTrimFile.
canCopy Set this to true if the importer supports copying clips in the

Project Manager.

Setup flags
hasSetup If set, the importer has a setup dialog. The dialog should be pre-

sented in response to imGetPrefs
setupOnDblClk If set, the setup dialog should be opened whenever the user

double clicks on a file imported by the plug-in the timeline or the
project bin.

Memory handling flags
dontCache Unused.
keepLoaded If set, the importer plug-in should never be unloaded. Don’t set

this flag unless it’s absolutely necessary (it usually isn’t).

Other

Importers • 157Adobe Premiere Pro SDK Guide

priority Determines priority levels for importers that handle the same
filetype. Importers with higher numbers will override import-
ers with lower numbers. For overriding importers that ship with
Premiere, use a value of 100 or greater. Higher-priority importers
can defer files to lower-priority importers by returning imBad­
File during imOpenFile8 or imGetInfo8.

importType Type identifier for the import module assigned based on the
plug-in’s IMPT resource. Do not modify this field.

canProvideClosed­
Captions

New in Premiere Pro CC. Set this to true if the importer supports
media with embedded closed captioning.

avoidAudioConform Set this to true if the importer supports fast audio retrieval and
does not need the audio clips it imports to be conformed.

canProvidePeakAudio New in Premiere Pro CS5.5. Set this to true if your non-synthetic
importer wants to provide peak audio data using imGetPeakAu­
dio.

acceleratorFileExt Fill this prUTF16Char array of size 256 with the file extensions
of accelerator files that the importer creates and uses.

canSupplyMetadata­
ClipName

Allows file based importer to set clip name from metadata. Set
this in imFileInfoRec8.streamName.

canProvideFileList New in CS6. Set this to true if the importer will provide a list of
all files for a copy operation in response to imQueryInputFileList.

fileInfoVersion New in CC 2014. This is used by an optimization in an internal
importer. Do not use.

Unused
canResize
canDoSubsize
canAsync

imIndFormatRec

Selector: imGetIndFormat

Describes the format(s) supported by the importer. Synthetic files can only have one format.

typedef struct {
 csSDK_int32 filetype;
 csSDK_int32 flags;
 csSDK_int32 canWriteTimecode;
 char FormatName[256];
 char FormatShortName[32];
 char PlatformExtension[256];
 prBool hasAlternateTypes;

Importers • 158Adobe Premiere Pro SDK Guide

 csSDK_int32 alternateTypes[kMaxAlternateTypes];
 csSDK_int32 canWriteMetaData;
} imIndFormatRec;

filetype Unique four character code (fourcc) of the file.
flags Legacy mechanism for describing the importer

capabilities. Though the flags will still be honored
for backward compatability, current and future im-
porters should not use these flags. See table below
for details.

canWriteTimecode If set, timecode can be written for this filetype.
FormatName[256] The descriptive importer name.
FormatShortName[256] The short name for the plug-in, appears in the

format menu.
PlatformExtension[256] List of all the file extensions supported by this im-

porter. If there’s more than one, separate with null
characters.

hasAlternateTypes Unused
alternateTypes[kMaxAlternate
Types]

Unused

canWriteMetaData New in 6.0. If set, imSetMetaData is supported for
the filetype

The flags listed below are only for legacy plug-ins and should not be used.

Flag Usage
xfIsMovie Unused
xfCanReplace Unused
xfCanOpen Unused: Use imImportInfoRec.canOpen instead.
xfCanImport Unused: The PiPL resource describes the file as an importer.
xfIsStill Unused: Use imFileInfoRec.imImageInfoRec.isStill instead.
xfIsSound Unused: Use imFileInfoRec.hasAudio instead.
xfCanWriteTimecode If set, the importer can respond to imGetTimecode and

imSetTimecode.

Obsolete: use imIndFormatRec.canWriteTimecode
instead.

xfCanWriteMetaData Writes (and reads) metadata, specific to the importer’s four char-
acter code filetype.

Obsolete: use imIndFormatRec.canWriteMetaData
instead.

Importers • 159Adobe Premiere Pro SDK Guide

xfCantBatchProcess Unused

imIndPixelFormatRec

Selector: imGetIndPixelFormat

Describes the pixel format(s) supported by the importer.

typedef struct {
 void *privatedata;
 PrPixelFormat outPixelFormat;
 const void* prefs;
} imIndPixelFormatRec;

privatedata Instance data from imGetInfo8 or imGetPrefs8.
outPixelFormat One of the pixel formats supported by the importer
prefs New in CC. Clip Source Settings data gathered during imGet­

Prefs8 (setup dialog).

imInitiateAsync ClosedCaptionScanRec

Selector: imInitiateAsyncClosedCaptionScan

Both imGetNextClosedCaption and imCompleteAsyncClosedCaptionScan may be called from a
different thread from which imInitiateAsyncClosedCaptionScan was originally called. To help
facilitate this, outAsyncCaptionScanPrivateData can be allocated by the importer to be
used for the upcoming closed caption scan calls, which should then be deallocated in imComple­
teAsyncClosedCaptionScan.

The estimated duration of all the closed captions can also be filled in. This is useful for certain
cases where the embedded captions contain many frames of empty data.

typedef struct {
 void* privatedata;
 void* prefs;
 void* outAsyncCaptionScanPrivateData;
 csSDK_int64 outScale;
 csSDK_int64 outSampleSize;
 csSDK_int64 outEstimatedDuration;
} imInitiateAsyncClosedCaptionScanRec;

privatedata Instance data gathered during imGetInfo8 or imGetPrefs8.

Importers • 160Adobe Premiere Pro SDK Guide

prefs Clip Source Settings data gathered during imGetPrefs8 (setup
dialog).

outAsyncCaptionScan­
PrivateData

The importer can allocate instance data for this closed caption
scan, and pass it back here.

outScale New in CC October 2013. The frame rate of the video clip,
represented as scale over sampleSize.outSampleSize

outEstimatedDuration New in CC October 2013. The estimated duration of all the
captions, in the above timescale

imMetaDataRec

Selector: imGetMetaData and imSetMetaData

Describes the metadata specific to a given four character code.

typedef struct {
 void *privatedata;
 void *prefs;
 csSDK_int32 fourCC;
 csSDK_uint32 buffersize;
 char *buffer;
} imMetaDataRec;

privatedata Instance data gathered during imGetInfo8 or imGetPrefs8.
prefs Clip Source Settings data gathered during imGetPrefs8 (setup

dialog).
fourcc Fourcc code of the metadata chunk.
buffersize Size of the data in buffer.
buffer The metadata.

imPeakAudioRec

Selector: imGetPeakAudio

Describes the peak values of the audio at the specified position.

typedef struct {
 void *inPrivateData;
 void *inPrefs;
 PrAudioSample inPosition;
 float inSampleRate;
 csSDK_int32 inNumSampleFrames;

Importers • 161Adobe Premiere Pro SDK Guide

 float **outMaxima;
 float **outMinima;
} imPeakAudioRec;

inPrivateData Instance data gathered during imGetInfo8 or imGetPrefs8.
inPrefs Instance data gathered during imGetPrefs8 (setup dialog).
inPosition The starting audio sample frame of the peak data.
inSampleRate The sample rate at which to generate the peak data.
inNumSampleFrames The number of sample frames in each buffer.
outMaxima An array of arrays to be filled with the maximum sample values.
outMinima An array of arrays to be filled with the minimum sample values.

imPreferredFrameSizeRec

Selector: imGetPreferredFrameSize

Describes a frame size preferred by the importer.

typedef struct {
 void *inPrivateData;
 void *inPrefs;
 PrPixelFormat inPixelFormat;
 csSDK_int32 inIndex;
 csSDK_int32 outWidth;
 csSDK_int32 outHeight;
} imPreferredFrameSizeRec;

inPrivateData Instance data gathered during imGetInfo8 or imGetPrefs8.
inPrefs Clip Source Settings data gathered during imGetPrefs8 (setup

dialog).
inPixelFormat The pixel format for this preferred frame size.
inIndex The index of this preferred frame size.
outWidth The dimensions of this preferred frame size.
outHeight

imQueryContentStateRec

Selector: imQueryContentState

Importers • 162Adobe Premiere Pro SDK Guide

Fill in the outContentStateID, which should be a GUID calculated based on the content
state of the clip at inSourcePath. If the state hasn’t changed since the last call, the GUID re-
turned should be the same.

typedef struct {
 const prUTF16Char* inSourcePath;
 prPluginID outContentStateID;
} imQueryContentStateRec;

imQueryDestinationPathRec

Selector: imQueryDestinationPath

Fill in the desired outActualDestinationPath, based on the inSourcePath and in­
SuggestedDestinationPath.

typedef struct {
 void *inPrivateData;
 void *inPrefs;
 const prUTF16Char *inSourcePath;
 const prUTF16Char *inSuggestedDestinationPath;
 prUTF16Char *outActualDestinationPath;
} imQueryDestinationPathRec;

inPrivateData Instance data gathered during imGetInfo8 or imGetPrefs8.
inPrefs Clip Source Settings data gathered during imGetPrefs8 (setup

dialog).
inSourcePath The path of the source file to be trimmed
inSuggestedDesti­
nationPath

The path suggested by Premiere where the destination file should
be created.

outActualDestina­
tionPath

The path where the importer wants the destination file to be cre-
ated.

imQueryInputFileListRec

Selector: imQueryInputFileList

Fill in the outContentStateID, which should be a GUID calculated based on the content
state of the clip at inSourcePath. If the state hasn’t changed since the last call, the GUID re-
turned should be the same.

typedef struct {

Importers • 163Adobe Premiere Pro SDK Guide

 void* inPrivateData;
 void* inPrefs;
 PrSDKString inBasePath;
 csSDK_int32 outNumFilePaths;
 PrSDKString *outFilePaths;
} imQueryInputFileListRec;

inPrivateData Instance data gathered from imGetInfo8 or imGetPrefs8.
inPrefs Clip Source Settings data gathered from imGetPrefs8 (setup dia-

log info).
inBasePath Path of main file that was passed earlier in imOpenFile.
outNumFilePaths The first time imQueryInputFileList is sent, fill in the number of

files that the media uses.
outFilePaths The second time imQueryInputFileList is sent, this will be preal-

located as an array of NULL strings. Use the String Suite to fill the
array with PrSDKStrings with the actual paths.

imQueryStreamLabelRec

Selector: imQueryStreamLabel

New in CS6. Based on the stream ID passed in, allocate and pass back a label for the stream. For
stereoscopic importers, use the predefined labels in PrSDKStreamLabel.h.

typedef struct {
 void *inPrivateData;
 csSDK_int32 *inPrefs;
 csSDK_int32 inStreamIdx;
 PrSDKString* outStreamLabel;
} imQueryStreamLabelRec;

privatedata Instance data gathered from imGetInfo8 or imGetPrefs8.
prefs Clip Source Settings data gathered from imGetPrefs8 (setup dia-

log info).
inStreamIdx The ID of the stream that needs to be labeled.
outStreamLabel The stream label, allocated using the String Suite.

imSaveFileRec8

Selector: imSaveFile8

Describes the file to be saved.

Importers • 164Adobe Premiere Pro SDK Guide

typedef struct {
 void *privatedata;
 csSDK_int32 *prefs;
 const prUTF16Char* sourcePath;
 const prUTF16Char* destPath;
 char move;
 importProgressFunc progressCallback;
 void *progressCallbackID;
} imSaveFileRec8;

privatedata Instance data gathered from imGetInfo8 or imGetPrefs8.
prefs Clip Source Settings data gathered from imGetPrefs8 (setup dia-

log info).
sourcePath Full path of the file to be saved.
destPath Full path the file should be saved to.
move If non-zero, this is a move operation and the original file (the

sourcePath) can be deleted after copying is complete.
progressCallback Function to call repeatedly to provide progress and to check for

cancel by user. May be a NULL pointer, so make sure the func-
tion pointer is valid before calling.

progressCallbackID Pass to progressCallback.

imSourceVideoRec

Selector: imGetSourceVideo, aiInitiateAsyncRead, aiGetFrame

Describes the requested frame, to be passed back in outFrame.

typedef struct {
 void *inPrivateData;
 csSDK_int32 currentStreamIdx;
 PrTime inFrameTime;
 imFrameFormat *inFrameFormats;
 csSDK_int32 inNumFrameFormats;
 bool removePulldown;
 PPixHand *outFrame;
 void *prefs;
 csSDK_int32 prefsSize;
 PrSDKString selectedColorProfileName;
 PrRenderQuality inQuality;
} imSourceVideoRec;

Importers • 165Adobe Premiere Pro SDK Guide

inPrivateData Instance data gathered during imGetInfo8 or imGetPrefs8.
currentStreamIdx New in CS6. If the clip has multiple streams (for stereoscopic

video or otherwise), this ID differentiates between them.
inFrameTime Time of frame requested.
inFrameFormats An array of requested frame formats, in order of preference. If

NULL, then any format is acceptable.
inNumFrameFormats The number of frame formats in the inFrameFormats.
removePulldown If true, pulldown should be removed if the pixel format supports

it.
outFrame Allocate memory to hold the requested frame, and pass it back

here.
prefs New in Premiere Pro 4.1. prefs data from imGetPrefs8
prefsSize New in Premiere Pro 4.1. Size of prefs data.
selectedColorPro­
fileName

New in Premiere Pro CS5.5. A string that specifies the color pro-
file of the imported frame.

inQuality New in Premiere Pro CC 2014.

imSubTypeDescriptionRec

Selector: imGetSubTypeNames

Added in Premiere Pro CS3. Describes the codec name associated with a given fourcc.

typedef struct {
 csSDK_int32 subType;
 prUTF16Char subTypeName[256];
} imSubTypeDescriptionRec;

imTimeInfoRec8

Selector: imGetTimeInfo8 and imSetTimeInfo8

Describes the timecode and timecode rate associated with a clip.

typedef struct {
 void *privatedata;
 void *prefs;
 char orgtime[18];
 csSDK_int32 orgScale;

Importers • 166Adobe Premiere Pro SDK Guide

 csSDK_int32 orgSampleSize;
 char alttime[18];
 csSDK_int32 altScale;
 csSDK_int32 altSampleSize;
 char orgreel[40];
 char altreel[40];
 char logcomment[256];
 csSDK_int32 dataType;
} imTimeInfoRec;

privatedata Instance data gathered during imGetInfo8 or imGetPrefs8.
prefs Clip Source Settings data gathered during imGetPrefs8 (setup

dialog).
orgtime[18] The original time in hours;minutes;seconds;frames, as cap-

tured from the source reel. The use of semi-colons indicates (to
Premiere) drop-frame timecode, e.g. “00;00;00;00”. Use colons for
non-drop-frame timecode, e.g. “00:00:00:00”.

orgScale Timebase of the timecode in orgtime, represented as scale over
sampleSize.orgSampleSize

alttime[18] An alternative timecode (may differ from the source timecode),
formatted as described above.

altScale Timebase of the timecode in alttime.
altSampleSize
orgreel[40] Original reel name.
altreel[40] Alternate reel name.
logcomment[256] Comment string.
dataType Currently always set to 1, denoting SMPTE timecode. More val-

ues may be added in the future.

imTrimFileRec8

Selector: imGetIndColorSpace

Describes how to trim a clip, based on information returned by the importer during imCheck-
Trim8. Also provides a callback to update the progress bar and check if the user has cancelled.

typedef struct {
 void *privatedata;
 void *prefs;
 csSDK_int32 trimIn;
 csSDK_int32 duration;
 csSDK_int32 keepAudio;

Importers • 167Adobe Premiere Pro SDK Guide

 csSDK_int32 keepVideo;
 const prUTF16Char *destFilePath;
 csSDK_int32 scale;
 csSDK_int32 sampleSize;
 importProgressFunc progressCallback;
 void *progressCallbackID;
} imTrimFileRec8;

privatedata Instance data gathered during imGetInfo8 or imGetPrefs8.
prefs Clip settings data gathered during imGetPrefs8 (setup dialog).
trimIn In point of the trimmed clip, in the timebase specified by scale

and sampleSize.
duration Duration of the trimmed clip. If 0, then the request is to leave the

clip untrimmed, and at the current duration
keepAudio If non-zero, the request is to keep the audio in the trimmed result.
keepVideo If non-zero, the request is to keep the video in the trimmed result.
destFilePath The unicode path and name of the file to create.
scale The frame rate of the video, represented as scale over sampleSize.
sampleSize
progressCallback importProgressFunc callback to call repeatedly to provide

progress and to check for cancel by user. May be a NULL pointer,
so make sure the function pointer is valid before calling.

progressCallbackID Pass to progressCallback.

ColorSpaceRec

Selector: imGetIndColorSpace

Describes the colorspace in use with the media.

typedef struct {
 void *privatedata;
 PrSDKColorSpaceType outColorSpaceType;
 RawColorProfileRec ioProfileRec;
 prSEIColorCodesRec outSEICodesRec;
} ColorSpaceRec;

privatedata Private.

Importers • 168Adobe Premiere Pro SDK Guide

outColorSpaceType One of the following:

 kPrSDKColorSpaceType_Undefined
 kPrSDKColorSpaceType_ICC
 kPrSDKColorSpaceType_LUT
 kPrSDKColorSpaceType_SEITags
 kPrSDKColorSpaceType_MXFTags

ioProfileRec A structure describing the color profile.
 csSDK_int32 ioBufferSize;
 void* inDestinationBuffer;
 PrSDKString outName;

outSEICodesRec A structure describing the color profile; used with H.265, HEVC,
AVC and ProRes media.

csSDK_int32 colorPrimariesCode;
csSDK_int32 transferCharacteristicCode;
csSDK_int32 matrixEquationsCode;
csSDK_int32 bitDepth;
prBool isFullRange;
prBool isRGB;

Suites

For information on how to acquire and manage suites, see the SweetPea Suites section.

Async File Reader Suite

New in Premiere Pro CS5. A cross-platform file handling suite.

Deferred Processing Suite

Allows an importer to schedule processing time when importing asynchronously, and to notify
the user that the media item is pending additional processing. In the Project panel, the name of
the item will be italicized, and its thumbnail will show as Pending.

Recorders • 169Adobe Premiere Pro SDK Guide

6Recorders

Recorders interface directly with capture hardware, and capture video and/or audio to any file
format. The recorder is responsible for displaying any video preview in the Capture panel, play-
ing any audio preview to the system sound or hardware output, driving the meters in the Audio
Master Meters panel, providing any settings in a custom dialog, and digitizing the video and
audio to a file (or multiple files) on disk. A recorder can optionally provide source timecode
information to Premiere, and notify Premiere when the video format changes so that the capture
preview area can be resized. The recorder does not communicate anything about the audio to
Premiere. When recording is complete, Premiere imports the file using any available importers
that support that filetype.

A recorder can only capture to a single filetype. To capture to several filetypes, provide several
recorders.

If you’ve never developed a recorder before, you can skip the What’s New sections, and go directly
to Getting Started.

What’s New?

What’s New in Premiere Pro CC 2014?

A new return code was added, rmRequiresRoyaltyContent. Return this from recmod_
Startup8 or recmod_StartRecord, if the codec used is unlicensed.

What’s New in Premiere Pro CS6?

The parent window handle is now properly passed in, during recmod_ShowOptions when a re-
corder should display its modal setup dialog.

Recorders • 170Adobe Premiere Pro SDK Guide

What’s New in Premiere Pro CS5?

Recorders can now display audio meters in the Audio Master Meters panel while previewing and
capturing. Just use the new AudioPeakDataFunc callback passed in recOpenParms with
recmod_Open.

What’s New in Premiere Pro CS4?

Audio settings in the Capture Settings window are no longer supported. Any audio settings
should be in the custom dialog shown by the recorder during recmod_ShowOptions. Recorders
should no longer set the acceptsAudioSettings flag in recInfoRec8.

No More Project Presets

Since Premiere Pro CS4 support sequence-specific settings, project presets have been replaced by
sequence presets. The difference from project presets are that sequence presets do not contain
information to initialize capture settings. This means that users will have to initialize capture set-
tings manually the first time they use a recorder with custom settings.

When the Capture Panel is invoked, if the capture settings are invalid or uninitialized, the
Capture Settings dialog is invoked. In the Capture Settings dialog: If the recorder requires private
data, the user cannot continue past the Capture Settings dialog until they have opened the current
recorder’s settings dialog.

What’s New in Premiere Pro CS3?

A new function, GetDeviceTimecodeFunc, can be used to ask the device controller for its
current timecode.

A new return value, rmRequiresCustomPrefsError, should be returned on recmod_
SetActive if there are no valid capture prefs.

Getting Started

Selector Calling Sequence

The best ways to get familiar with the recorder API is to observe the messages sent between Pre-
miere and the recorder plug-in.

Recorders • 171Adobe Premiere Pro SDK Guide

recmod_Startup8 is sent once when Premiere launches. When Project Settings > Capture Settings
is opened, recmod_Open is sent to create a new recorder instance and open the capture driver. rec­
mod_GetSetupInfo8 is then sent, so the recorder can specify which settings buttons (if any) should
be enabled in the Capture Settings window when the recorder is selected.

If one or more settings buttons are enabled and then clicked by the user, recmod_ShowOptions is
sent so the recorder can display a dialog (and save any user choices). When the Capture Settings
window is closed, recmod_Close is sent to end the capture instance.

Whenever the Capture panel is open, the recorder will receive recmod_SetActive calls, with a
parameter telling it to become active or inactive (based on user activity). recmod_SetDisp provides
the plug-in the dimensions of the preview area in the Capture panel. recmod_Idle is repeatedly
sent until the Record button is pushed, to give the recorder time to update the preview area and
play audio coming from the capture hardware.

When the user clicks Record, or starts an In/Out or Batch capture, recmod_PrepRecord8 is sent.
The recorder prepares to capture, and if a start timecode is provided, tells the device controller to
get the device into position using preRollFunc. The preRollFunc will block until the de-
vice is exactly in the right position, and when it returns, the recorder should immediately return
back to Premiere, open which recmod_StartRecord is then sent to the recorder, which should im-
mediately starts capturing.

When the recorder starts capturing and returns from recmod_StartRecord, Premiere will repeat-
edly call recmod_ServiceRecord to give the recorder processor time. During recording, report
status to Premiere with StatusDispFunc.

The capture may be stopped in several ways: The user could click the Stop button, the capture may
reach the predetermined out point of an In/Out or Batch capture, or the recorder might return
an error from recmod_ServiceRecord. In all cases, recmod_StopRecord will be sent to stop the
capture, possibly followed by recmod_CloseRecord if there no more items in the batch. Finally,
recmod_Close is sent when the Capture panel is closed to destroy the recorder instance.

recmod_Shutdown is sent when Premiere terminates.

Try the Sample Recorder Plug-in

Now that you’ve read the overview of the selector calling sequence above, build the sample re-
corder plug-in included with this SDK, and give it a whirl. To properly simulate a capture, you’ll
also need to create an .sdk media file and place it in the proper location.
1) Build the recorder, importer, and exporter into the plug-ins directory
2) Launch Premiere Pro and use the exporter to transcode any media file into the .sdk file format.
3) Place the newly created media file at “C:\premiere.sdk” on Windows, or “premiere.sdk” on the
Desktop on Mac OS.
Now when you “capture” a file, it will use this file, and automatically import it using the importer.

Recorders • 172Adobe Premiere Pro SDK Guide

Metadata

Pixel aspect ratio and timecode are provided by the recorder by filling out recCaptured­
FileInfo. Starting in CS4, after a clip has been captured, if Premiere has an XMP handler that
supports the clip’s filetype, the XMP handler will open the captured file and inject the informa-
tion. If no such XMP handler is provided, the recorder is responsible for embedding any pixel
aspect ratio information to the file, but Premiere will send imSetTimeInfo8 to the importer to
stamp the file with timecode.

Save Captured File Dialog

After a single clip is captured, the Save Captured File dialog allows the user to rename the file-
name of the clip just captured. The recorder is not involved in this process. Instead, the importer
is called to open the newly captured clip, and it is sent imSaveFile8 with the move flag set to true
to move the file. This is handled by the importer, since imSaveFile8 is usually already implement-
ed to support the Project Manager.

Switching Preview Area Between Different Frame Sizes

FormatChangedFunc enables recorders to tell Premiere when the pixel aspect ratio has
changed so the Capture Panel preview area can be resized. It can be called during preview, and
even during capture.

Scene Detection

A recorder can optionally implement one or both of two features based on scene detection: Scene
Capture and Scene Searching. What determines a scene break is up to the discretion of the re-
corder. The built-in DV recorder determines scene breaks by time/date breaks in the DV stream.
But a recorder could analyze the video for breaks, or use any method it chooses to implement.

Scene Capture

Scene Capture enables a recorder to capture a continuous stream to multiple files divided up by
scenes.

To support scene capture, the recorder must set recInfoRec8.canCaptureScenes =
kPrTrue during recmod_Startup8. When the user captures with Scene Detect on, recCap­
ParmsRec8.captureScenes will be non-zero during recmod_PrepRecord8. The recorder
should begin capture, and when it detects the end of a scene, call SceneCapturedFunc8, to
notify Premiere that a scene has been captured. Premiere passes back the recFileSpec8 to

Recorders • 173Adobe Premiere Pro SDK Guide

give the recorder the filepath to which the next scene should be captured. Premiere also reserves
memory for and passes back recCapturedFileInfo for the next capture.

Scene Searching

Scene Searching enables a recorder to fast forward or rewind to different scenes. The user can hit
the Next Scene or Previous Scene buttons several times to seek several scenes away. Of course,
this feature is only possible with the help of a device controller as well.

To support scene capture, the recorder must set recInfoRec8.canSearchScenes =
kPrTrue during recmod_Startup8. When the user chooses Next Scene or Previous Scene, the
recorder is sent recmod_StartSceneSearch. The scene searching algorithm happens in two passes.
The first pass is a play fast forward or backward in the initial direction. In this mode, when
the recorder passes the scene boundary, it should call ReportSceneFunc to tell Premiere
the approximate range where the scene boundary is and return rmEndOfScene. Premiere
will call recmod_StopSceneSearch, followed by recmod_StartSceneSearch, to start a new slow
scan scene search in the opposite direction, passing back the approximate range reported by
ReportSceneFunc. When the recorder reaches the scene boundary again, it should once
again call ReportSceneFunc and return rmEndOfScene.

Entry Point

Below is the entry point function prototype for all recorder plug-ins. Premiere calls this entry
point function to drive the recorder based on user input.

int RecEntry (
 csSDK_int32 selector,
 rmStdParms *stdParms,
 void *param1,
 void *param2)

The selector is the action Premiere wants the recorder to perform. It tells the recorder the rea-
son for the call. stdParms provides the recorder with callback functions to access additional
information from Premiere or to have Premiere perform tasks. Parameters 1 and 2 contain state
information and vary with the selector; they may contain a specific value or a pointer to a struc-
ture. Return rmNoErr if successful, or an appropriate return code.

Standard Parameters

This structure is sent from Premiere to the plug-in with every selector.

typedef struct {

Recorders • 174Adobe Premiere Pro SDK Guide

 int rmInterfaceVer;
 recCallbackFuncs *funcs;
 piSuitesPtr piSuites;
} rmStdParms;

Member Description
rmInterfaceVer Recorder API version

Premiere Pro CS6 - RECMOD_VERSION_12
Premiere Pro CS5.5 - RECMOD_VERSION_11
Premiere Pro CS5 - RECMOD_VERSION_10
Premiere Pro CS4 - RECMOD_VERSION_9
Premiere Elements 3 - RECMOD_VERSION_8
Premiere Pro CS3 - RECMOD_VERSION_7

funcs Pointers to callbacks for recorders
piSuites Pointer to universal callback suites

Recorder-Specific Callbacks

Recorders have access to ClassData Functions and Memory Functions through the recCall­
backFuncs, which is a member of rmStdParms. StatusDispFunc, PrerollFunc,
ReportSceneFunc, and SceneCapturedFunc8 are accessible through recCapParms­
Rec8, which is sent with recmod_PrepRecord8.

typedef struct {
 ClassDataFuncsPtr classFuncs;
 PlugMemoryFuncsPtr memoryFuncs;
} recCallbackFuncs;

int (*StatusDispFunc){
 void *callbackID,
 char *stattext,
 int framenum};

csSDK_int32 (*PrerollFunc)(
 void *callbackID);

void (*ReportSceneFunc)(
 void *callbackID,
 csSDK_uint32 inSceneEdgeTimecode,
 csSDK_uint32 inEarliestSceneEdgeTimecode,
 csSDK_uint32 inGreatestSceneEdgeTimecode);

void (*SceneCapturedFunc8)(

Recorders • 175Adobe Premiere Pro SDK Guide

 void *callbackID,
 prUTF16Char *inFileCaptured,
 recFileSpec8 *outNextSceneFilename,
 recCapturedFileInfo **outFileInfo);

void (*SceneCapturedFunc)(
 void *callbackID,
 char *inFileCaptured,
 recFileSpec *outNextSceneFilename,
 recCapturedFileInfo **outFileInfo);

void (*FormatChangedFunc)(
 void *callbackID,
 unsigned int inPixelAspectRatioNum,
 unsigned int inPixelAspectRatioDen,
 unsigned int inMaxFrameWidth,
 unsigned int inMaxFrameHeight,
 TDB_TimeRecord inFramerate,
 int isDropFrame);

void (*GetDeviceTimecodeFunc)(
 void *callbackID,
 csSDK_uint32 *outTimecode,
 TDB_TimeRecord *outFrameRate,
 int *outIsDropFrame);

void (*AudioPeakDataFunc)(
 void *callbackID,
 recAudioPeakData *inAudioPeakData)

Function Description
classFuncs See ClassData functions
memoryFuncs Legacy memory-related callbacks. These are the same

ones passed in through piSuites.

Recorders • 176Adobe Premiere Pro SDK Guide

StatusDispFunc Available in recCapParmsRec8 during recmod_
PrepRecord8. Callback function pointer for use during
capture to call into Premiere and update status informa-
tion in the Capture Window.

callbackID is the recording session instance passed in
recCapParmsRec.

stattext is text Premiere will display at the top of the
Capture Window.

framenum is the frame number being captured, repre-
sented in the absolute number of frames. For example,
00;00;04;03 in NTSC drop-frame timecode would be
represented as 123.

PrerollFunc Available in recCapParmsRec8 during recmod_
PrepRecord8, only if the user has initiated a device con-
trolled capture (Capture In/Out or Batch Capture).
Callback function pointer to initiate device control pre-
roll, by sending a dsExecute/cmdLocate message to the de-
vice controller. Callback returns when the deck is playing
at the proper frame.

callbackID is the recording session instance passed in
recCapParmsRec.

Host returns a prDevicemodError to inform why the
preroll failed.

ReportSceneFunc Although this callback is obsolete for Scene Capture (su-
perceded by SceneCapturedFunc8), it is still used for
Scene Search to return the scene detected by the recorder.
Available in recSceneDetectionParmsRec during
recmod_StartSceneSearch.

The inSceneEdgeTimecode parameter marks the
timecode of the scene edge, if it can be determined exactly.
If it cannot, it marks the approximated timecode of the
edge, and the inEarliestSceneEdgeTimecode
and inGreatestSceneEdgeTimecode parameters
mark the earliest and latest possible timecodes that the
scene would fall in between. If the scene break can be
determined exactly, all three return parameters should be
set to the same value.

Recorders • 177Adobe Premiere Pro SDK Guide

SceneCapturedFunc8 New in Premiere Pro 2.0. Available in recCapParms­
Rec8 during recmod_ PrepRecord8. Callback to notify
Premiere that a scene has been captured. Premiere returns
the recFileSpec8 to designate a filename for the next
scene to capture and reserves memory for and returns
recCapturedFileInfo for the next capture.

SceneCapturedFunc Obsolete. Use SceneCapturedFunc8 above.
FormatChangedFunc Available in recOpenParms during recmod_Open.

Use this when the pixel aspect ratio has changed so the
Capture Panel can be resized. It can be called during pre-
view, and even during capture.

GetDeviceTimecodeFunc New in Premiere Pro CS3. Used to ask the device control-
ler for its current timecode.

AudioPeakDataFunc New in Premiere Pro CS5. Available in recOpenParms
during recmod_Open. Use this to display audio meters in
the Audio Master Meters panel while previewing and cap-
turing. The values will be updated as long as the capture
panel is active or front.

This call can be made from any thread, at any time.
Metering can be provided for up to 16 channels, in any
configuration desired: 1, 2, 4, 6/5.1, 8, or 16.

The recorder provides the peak amplitude in longAm­
plitude, and the current audio amplitude in short­
Amplitude. The recorder can decide whether to pick a
single value in longAmplitude, or do an average over
the sound data. In Premiere Pro’s built-in recorders, the
long term peak data is currently buffered for 3 seconds at
a time.

If no new data is sent, it stays on the last value. So set the
amplitude values to zero when finished.

Selector Table

This table summarizes the various selector commands a recorder can receive.

Selector param1 param2
recmod_Startup8 recInfoRec8 * unused
recmod_Shutdown unused unused
recmod_GetSetupInfo8 PrivateData recCapSetups8

Recorders • 178Adobe Premiere Pro SDK Guide

recmod_ShowOptions PrivateData recSetupParms

recmod_Open PrivateData recOpenParms

recmod_Close PrivateData unused
recmod_SetActive PrivateData (csSDK_int32) boolean

toggle
recmod_SetDisp PrivateData recDisplayPos

recmod_Idle PrivateData recGetTimecodeRec

recmod_PrepRecord8 PrivateData recCapParmsRec8

recmod_StartRecord PrivateData recCapturedFileInfo

recmod_ServiceRecord PrivateData unused
recmod_StopRecord PrivateData unused
recmod_CloseRecord PrivateData unused
recmod_QueryInfo PrivateData recCapInfoRec

recmod_StartSceneSearch recSceneDetection-
ParmsRec *

recmod_StopSceneSearch unused
recmod_ServiceSceneSearch unused
Obsolete - recmod_Startup, recmod_GetSetupInfo, recmod_PrepRecord
Currently unused in CS4 - recmod_QueryInfo, recmod_AudioIndFormat, recmod_
GetAudioIndFormat7, recmod_StepRecord, recmod_StillRecord

Selector Descriptions

This section provides a brief overview of each selector and highlights implementation issues.

recmod_Startup8

param1 - recInfoRec8
param2 - unused

Sent once when Premiere launches so the plug-in can initialize and return its attributes to
Premiere. The module should connect to any required capture hardware or drivers and fill in the
recInfoRec8.

recmod_Shutdown

param1 - unused
param2 - unused

Recorders • 179Adobe Premiere Pro SDK Guide

Sent when Premiere terminates. Deallocate any memory and release the capture hardware or
driver.

recmod_GetSetupInfo8

param1 - PrivateData
param2 - recCapSetups8

Sent when the Capture Settings dialog is first displayed to obtain custom settings information.
recCapSetups8 provides text label fields button titles and enabling.

recmod_ShowOptions

param1 - PrivateData
param2 - recSetupParms

Sent when the user presses a settings button (one of four available) in the Capture Settings dialog.
Request settings buttons during recmod_GetSetupInfo8.

recSetupParms indicates which button was pushed. If the char * passed in recSet­
upParms isn’t NULL, it points to memory containing private data; otherwise, no previous
settings are available. All the setup dialogs share the same memory; only one record is preserved.
If there are several different setup records, they should all fit within one flattened memory alloca-
tion.

recmod_Open

param1 - PrivateData
param2 - recOpenParms

Sent when Premiere’s New Project Settings > Capture Settings dialog or the Movie Capture win-
dow is displayed. Initialize hardware, create a private data structure for instance data, and pass a
pointer to it back in param1. It will be sent back to you with subsequent selectors. recOpen­
Parms contains information about the capture window and callbackID; store this information in
private instance data.

recmod_Close

param1 - PrivateData
param2 - unused

Recorders • 180Adobe Premiere Pro SDK Guide

Capture is complete and the capture window is closed. Disconnect from the hardware and deal-
locate the private instance data.

recmod_SetActive

param1 - PrivateData
param2 - boolean toggle

param2 indicates whether the plug-in should activate. When a capture window is opened or
receives the focus, it will be activated.

recmod_SetDisp

param1 - PrivateData
param2 - recDisplayPos

Sent when the capture window is resized or moved. Update a proxy or overlay in the capture
window during capture. recDisplayPos specifies the new bounds. If they are unacceptable,
modify them; the selector will be sent again with the new position. Set mustresize in rec­
DisplayPos to resize the preview frame with the specified bounds. The plug-in is not allowed
to resize the capture window, just the preview frame. If mustresize is set but the plug-in can’t
resize the frame, display something (black, grey, a graphic of your choice) for a preview. mus­
tresize will be set when the Capture Settings dialog is being displayed.

recmod_Idle

param1 - PrivateData
param2 - recGetTimecodeRec *

Sent to give the plug-in processing time.

recmod_PrepRecord8

param1 - PrivateData
param2 - recCapParmsRec8

Set up for recording, based on the data in recInfoRec8. If the prerollFunc callback func-
tion pointer is valid, call it to tell the device controller to get the device ready. Recording com-
mences with the next selector, recmod_StartRecord.

If pressing the record button results in a recorder error before the recmod_PrepRecord8 selector is
even sent, make sure that the fileType four character code set in recInfoRec8 is supported

Recorders • 181Adobe Premiere Pro SDK Guide

by an installed importer.

recmod_StartRecord

param1 - PrivateData
param2 - recCapturedFileInfo *

Sent after recmod_PrepRecord. Start capturing immediately. The pointer to recCaptured­
FileInfo is valid until the recording finishes.

recmod_ServiceRecord

param1 - PrivateData
param2 - unused

Sent repeatedly to give the plug-in processor time while recording.

recmod_StopRecord

param1 - PrivateData
param2 - unused

Stop recording and release record buffers.

recmod_CloseRecord

param1 - PrivateData
param2 - unused

Sent after recmod_StopRecord. During batch capturing, recmod_StopRecord will be called after
every clip, but recmod_CloseRecord will not be called until after the last clip has been captured, to
finalize the record process.

recmod_QueryInfo

param1 - PrivateData
param2 - recCapInfoRec *

Sent when the user hits the Log Clip button in the Capture panel. The recorder should provide the
dimensions, pixel aspect ratio, and other attributes to be assigned to the offline clip. If the dimen-

Recorders • 182Adobe Premiere Pro SDK Guide

sions are not provided, the maxWidth/maxHeight values set in recInfoRec8 will be used,
which may be incorrect if the recorder supports multiple video resolutions.

Return Codes

Return Code Reason
rmNoErr Operation has completed without error.
rmUnsupported Unsupported command selector.
rmAudioRecordError Audio recording error.
rmVideoRecordError Video recording error.
rmVideoDataError Data rate too high to record (return this if too many frames get

dropped).
rmDriverError Driver error.
rmMemoryError Memory error.
rmDiskFullError Disk full.
rmDriverNotFound Can’t connect to the capture driver.
rmStatusCapture­
Done

Return from recmod_StartRecord when capture is complete.

rmCaptureLimit­
Reached

Return from recmod_ServiceRecord when the (self-imposed)
record limit time is reached.

rmBadFormatIndex Invalid format index - stops recmod_GetAudioIndFormat queries
from Premiere.

rmFormatAccept The output format is valid.
rmFormatDecline Cannot capture to this format.
rmErrorPreroll-
Abort

Preroll function aborted.

rmUserAbort Return from recmod_StartRecord if user aborts.
rmErrFileSize-
LimitErr

Return from recmod_ServiceRecord if file size limit was reached.

rmFramesDropped Return value to use for dropped frames.
rmDeviceRemoved The device was removed during capture. Premiere assumes all

material captured before this value as valid.
rmDeviceNotFound The capture device was not found.
rmCapturedNoFrames No frames were captured.
rmEndOfScene If detecting scenes and recorder senses end of scene
rmNoFrameTimeout Haven’t seen any frames in a while, maybe the tape stopped or hit

blank part of tape
rmCantDetect-
ScenesError

If the recorder can’t find the info it needs to properly judge scene
bounds

Recorders • 183Adobe Premiere Pro SDK Guide

rmCantFindRecord-
InPoint

If capturing in to out and the recorder can’t find the in point
timecode

rmLastErrorSet The recorder set the last error string using the SweetPea Error
Suite

rmLastWarningSet The recorder set the last warning string using the SweetPea Error
Suite

rmLastInfoSet The recorder set the last info string using the SweetPea Error
Suite

rmIllegalAudio-
FormatChange

Return when two different audio formats are recorded on a tape
and the user tries to capture frames from both in a single capture.

rmRequiresCustom­
PrefsError

New for Premiere Pro CS3. Return when no valid capture prefs
are found during recmod_SetActive.

rmErrBadFile Problem with output file.
rmIsCacheable Return from recmod_Startup8 if the plug-in is cacheable, rmNo­

Error if not cacheable
rmRequiresRoyalty­
Content

New for Premiere Pro CC 2014. Return from recmod_
Startup8 or recmod_StartRecord, if the codec used is
unlicensed.

Structures

Structure Sent with selector
recInfoRec8 recmod_Startup8
recCapSetups8 recmod_GetSetupInfo8
recDisplayPos recmod_SetDisp, recmod_Open (member of re­

cOpenParms)
recOpenParms recmod_Open
recCapturedFileInfo recmod_StartRecord
recFileSpec8 recmod_PrepRecord8 (member of recCapParm­

sRec8)
recSetupParms recmod_ShowOptions
recCapParmsRec8 recmod_PrepRecord8
recGetTimecodeRec recmod_Idle
recCapInfoRec recmod_QueryInfo
recSceneDetectionParmsRec recmod_StartSceneSearch
Obsolete - recInfoRec, recCap­
Setups, recFileSpec, recCap­
ParmsRec

Recorders • 184Adobe Premiere Pro SDK Guide

Structure Descriptions

recInfoRec8

Selector: recmod_Startup8

Describes the recorder’s capabilities to Premiere.

typedef struct {
 csSDK_int32 recmodID;
 csSDK_int32 fileType;
 csSDK_int32 classID;
 int canVideoCap;
 int canAudioCap;
 int canStepCap;
 int canStillCap;
 int canRecordLimit;
 int acceptsTimebase;
 int acceptsBounds;
 int multipleFiles;
 int canSeparateVidAud;
 int canPreview;
 int wantsEvents;
 int wantsMenuInactivate;
 int acceptsAudioSettings;
 int canCountFrames;
 int canAbortDropped;
 int requestedAPIVersion;
 int canGetTimecode;
 int reserved[16];
 csSDK_int32 prefTimescale;
 csSDK_int32 prefSamplesize;
 csSDK_int32 minWidth;
 csSDK_int32 minHeight;
 csSDK_int32 maxWidth;
 csSDK_int32 maxHeight;
 int prefAspect;
 csSDK_int32 prefPreviewWidth;
 csSDK_int32 prefPreviewHeight;
 prUTF16Char recmodName[256];
 csSDK_int32 audioOnlyFileType;
 int canSearchScenes;
 int canCaptureScenes;

Recorders • 185Adobe Premiere Pro SDK Guide

 prPluginID outRecorderID;
} recInfoRec, *recInfoPtr;

recmodID Premiere’s internal identifier for the plug-in. Never
change this value.

fileType Four character code for the captured file (for ex-
ample ‘AVIV’ for Video for Windows .AVI files,
and ‘MOOV’ for QuickTime .MOV files). Invent
a unique code for proprietary formats as necessary,
but make sure an importer is installed that sup-
ports the fourcc. If no such importer is installed,
pressing the record button will result in a recorder
error before the recmod_PrepRecord selector is
even sent.

classID Class identifier, used to differentiate between plug-
ins that support the same fileType. ClassID is the
identifying characteristic of plug-ins which form a
media abstraction layer.

canVideoCap If set, the recorder can capture video.
canAudioCap If set, the recorder can capture audio
canStepCap Unused
canStillCap Unused
canRecordLimit If set, the recorder can accepts recording time

limits. The recorder will receive the user-specified
record limit in recCapParmsRec.record­
limit. The plug-in must enforce the time limit
during capture.

acceptsTimebase If set, the recorder can capture to an arbitrary
timebase.

acceptsBounds If set, the recorder can capture to an arbitrary
frame size.

multipleFiles Unused
canSeparateVidAud Unused
canPreview Unused
wantsEvents Unused
wantsMenuInactivate Unused
acceptsAudioSettings Unused, do not set
canCountFrames If set, the recorder is expected to count frames and

quit when the count is reached.
canAbortDropped If set, the recorder can abort when frames are

dropped
requestedAPIVersion Unused

Recorders • 186Adobe Premiere Pro SDK Guide

canGetTimecode Can provide timecode from the capture stream
(like DV).

reserved[16] Do not use.
activeDuringSetup If set, that the recorder shouldn’t be deactivated

before a recmod_GetSetupInfo8 selector is issued
prefTimescale Frames per second, in scale over sampleSize.
prefSamplesize
minWidth Define the minimum and maximum frame sizes

the plug-in can capture. If the plug-in can only
capture to a single fixed size, then set them to the
same value.

minHeight
minWidth
minHeight
prefAspect Preferred frame aspect ratio for the captured

frames. Shift the width into the high order word
and the height into the low order word. For exam-
ple, store 640x480 (a 4:3 aspect ratio) as:

prefAspect = (640 << 16) + 480;
prefPreviewWidth Unused
prefPreviewHeight Unused
recmodName[256] The recorder’s name (appears in the Capture

Format pulldown menu).
audioOnlyFileType File type for audio-only captures. If 0, the video

file type will be used.
canSearchScenes If true, the recorder can detect a scene boundary

for searching purposes
canCaptureScenes If true, the recorder can identify when it has

reached the end of a scene
outRecorderID New in Premiere Pro 2.0. A GUID identifier is

now required for all recorders. Editing Mode
XMLs use these GUIDs to refer to recorders.

recCapSetups8

Selector: recmod_GetSetupInfo8

Enumerate custom setup buttons for the Capture Settings dialog, and pull-down menu items in
the Capture panel.

typedef struct {
 int customSetups;
 csSDK_int32 enableflags;
 recSetupItem8 setups[4];

Recorders • 187Adobe Premiere Pro SDK Guide

} recCapSetups8;

customSetups Number of setup buttons (up to 4).
enableflags Bitstring where bits 0 to 3 correspond with set-

ups 1 to 4. Set the appropriate bits to indicate to
Premiere which setups should be enabled

setups[4] Four recSetupItem8s used to label the setup
buttons. A recSetupItem8 is just a prUTF­
16Char[256].

recDisplayPos

Selector: recmod_SetDisp, recmod_Open (member of recOpenParms)

Describes the display position for preview frames.

typedef struct {
 prWnd wind;
 int originTop;
 int originLeft;
 int dispWidth;
 int dispHeight;
 int mustresize;
} recDisplayPos;

wind The window.
originTop originTop and originLeft identify the

offset in pixels from the top left of the window in
which to display.

originLeft
dispWidth Display area dimensions.
dispHeight
mustresize If set, the video must be resized to fit within these

bounds (see recmod_SetDisp).

recOpenParms

Selector: recmod_Open

Provides capture session information; save this information in private instance data.

typedef struct {

Recorders • 188Adobe Premiere Pro SDK Guide

 recDisplayPos disp;
 void *callbackID;
 char *setup;
 FormatChangedFunc formatFunc;
 AudioPeakDataFunc audioPeakDataFunc;
} recOpenParms;

disp Preview display area
callbackID Premiere’s instance identifier for this recording

session. Save this value for use with callback rou-
tines.

setup If not null, points to settings saved from a previous
recording session.

formatFunc Use to inform Premiere of a new aspect ratio so
the Capture panel can be updated

audioPeakDataFunc New in CS5. Callback function to send audio
metering data to be displayed by Premiere in the
Audio Master Meters panel.

recCapturedFileInfo

Selector: recmod_StartRecord

Provide pixel aspect ratio and starting timecode of the captured clip.

typedef struct {
 unsigned int pixelAspectRatioNum;
 unsigned int pixelAspectRatioDen;
 char timeCode[31];
 TDB_TimeRecord tdb;
 char date[31];
} recCapturedFileInfo;

pixelAspectRatioNum Fill in the clip’s pixel aspect ratio.
pixelAspectRatioDen
timeCode Provide the text representation of the starting

timecode, as known by the recorder. If the record-
er can provide it, and it is non-zero then fill this in.

Don’t fill this in if the timecode is zero. As of
CS5.5, that will result in odd starting timecodes,
such as “08;06;40;11”.

tdb Timebase of the captured file.

Recorders • 189Adobe Premiere Pro SDK Guide

date New in Premiere Elements 7. The date of the the
captured file, formatted in one of the following
ways: “d/m/y” or “d/m/y h:m” or “d/m/y h:m:s”

recFileSpec8

Selector: recmod_PrepRecord8 (member of recCapParmsRec8)

Used to describe the capture destination file.

typedef struct {
 short volID;
 csSDK_int32 parID;
 prUTF16Char name[kPrMaxPath];
} recFileSpec8;

volID Unused
parID Unused
name Full file path.

recSetupParms

Selector: recmod_ShowOptions

Indicates which settings dialog should be displayed, and provides any previously saved settings.

typedef struct {
 uintptr_t parentwind;
 int setupnum;
 char *setup;
} recSetupParms;

parentwind Parent window owner.
setupnum Which setup button (1-4) was selected by the user.
setup If not null, points to saved settings from previous

sessions.

recCapParmsRec8

Selector: recmod_PrepRecord8

Recorders • 190Adobe Premiere Pro SDK Guide

Specifies capture settings.

typedef struct {
 void *callbackID;
 int stepcapture;
 int capVideo;
 int capAudio;
 int width;
 int height;
 csSDK_int32 timescale;
 csSDK_int32 samplesize;
 csSDK_int32 audSubtype;
 csSDK_uint32 audrate;
 int audsamplesize;
 int stereo;
 char *setup
 int abortondrops;
 int recordlimit;
 recFileSpec8 thefile;
 StatusDispFunc statFunc;
 PrerollFunc prerollFunc;
 csSDK_int32 frameCount;
 char reportDrops;
 short currate;
 short timeFormat;
 csSDK_int32 timeCode;
 csSDK_int32 inHandleAmount;
 ReportSceneFunc reportSceneFunc;
 int captureScenes;
 SceneCapturedFunc8 sceneCapturedFunc;
 bool recordImmediate;
 GetDeviceTimecodeFunc getDeviceTimecodeFunc;
} recCapParmsRec8;

callbackID Premiere’s instance identifier for this recording
session. Save this value for use with callback rou-
tines.

stepcapture Unused
capVideo If set, capture video.
capAudio If set, capture audio.

Recorders • 191Adobe Premiere Pro SDK Guide

width Dimensions of the video frames to capture. These
are only sent if acceptsBounds was set in the
recInfoRec. If the plug-in doesn’t accept bounds,
capture to the preferred dimensions we previously
set in recInfoRec8.

height

timescale Recording timebase. Only sent if accept­
sTimebase was set in the recInfoRec8.
Otherwise, capture using the timebase we previ-
ously set in recInfoRec8. This supercedes
currate below.

samplesize

audSubtype
audrate
audsamplesize
stereo

Unused

setup Pointer to private instance data allocated in re-
sponse to recmod_GetSetupInfo8.

abortondrops If set, stop capture if frames are dropped.
recordlimit Recording time limit, in seconds, only valid if

canRecordLimit was set in recInfoRec8.
Value passed in by Premiere. The plug-in must
enforce the limit during capture.

thefile Structure of type recFileSpec8 describing the
capture destination file, only valid during recmod_
PrepRecord8.

statFunc Callback function pointer for use during capture
to call into Premiere and update status informa-
tion in the Capture Panel. See StatusDispFunc for
more information.

preroll Callback function pointer to initiate device con-
trol pre-roll. This callback is only initialized if it
will be needed, meaning only it if doing an in/out
capture or batch capture. Otherwise, this function
pointer to be set to NULL. See PrerollFunc for
more information.

frameCount If canCountFrames was set in recIn­
foRec8, the number of frames to capture. No
device polling will be done.

reportDrops If non-zero, report dropped frames when they oc-
cur (by returning rmErrVidDataErr).

currate Frames per second to capture at (23, 24, 25, 30,
59). This is superceded by timescale / sam­
plesize above.

Recorders • 192Adobe Premiere Pro SDK Guide

timeFormat 0 = non-drop frame, 1 = drop frame timecode.
timeCode Timecode for in-point of capture (-1 means ig-

nore).
inHandleAmount Number of frames of handle (buffered lead-in),

previous to the user-specified capture in point, the
record module requires.

reportSceneFunc Obsolete. Use sceneCapturedFunc8 instead.
captureScenes True if user has initiated scene capture
sceneCapturedFunc Use this callback during scene capture to report

the end of a scene
recordImmediate If non-zero, begin recording immediately after

device control returns from seek for pre-roll; don’t
wait for a timecode.

getDeviceTimecodeFunc New for Premiere Pro CS3. Use this callback to ask
the device controller for its current timecode.

recGetTimecodeRec

Selector: recmod_Idle

Allows the recorder to supply timecode information.

typedef struct {
 csSDK_int32 status;
 short currate;
 short timeFormat;
 csSDK_int32 timeCode;
 short autoDetectDropness;
} recGetTimecodeRec;

status 0 indicates valid timecode, 1 indicates it’s un-
known or stale.

currate 30 for NTSC timecode, 25 for PAL.
timeFormat 0 for non-drop, 1 for drop-frame timecode.
timeCode Timecode as an integer, represented in the abso-

lute number of frames. For example, 00;00;04;03
in NTSC drop-frame timecode would be repre-
sented as 123.

Recorders • 193Adobe Premiere Pro SDK Guide

autoDetectDropness Non-zero if device controller has set
DeviceRec.autoDetectDropness to true.
This means that the device controller is relying on
the recorder to determining whether the timecode
is drop-frame or non-drop-frame. The recorder
must call FormatChangedFunc if there is any
change.

recCapInfoRec

Selector: recmod_QueryInfo

Allows the recorder to supply the resolution and pixel aspect ratio of the clip being logged.

typedef struct {
 csSDK_int32 version;
 int timeScale;
 int sampleSize;
 csSDK_int32 vidSubType;
 int width;
 int height;
 int depth;
 int fieldType;
 int quality;
 csSDK_int32 pixelAspectRatio;
 csSDK_int32 audSubType;
 int audRate;
 int audSampleSize;
 int audStereo;
 int reserved[10];
 char *setup;
} recCapInfoRec;

version The version of this structure. kRecCapIn­
foRecVersion

timeScale Unused. A logged clip gets it’s frame rate from the
device controller in cmdStatus.sampleSize

vidSubType Unused.

width Video resolution
height

Recorders • 194Adobe Premiere Pro SDK Guide

depth Unused.
fieldType
quality
pixelAspectRatio Pixel aspect ratio. This uses a representation where

the numerator is bit-shifted 16 to the left, and OR’d
with the denominator. For example NTSC DV
0.9091 PAR is (10 << 16) | 11.

audSubType Unused.
audRate
audSampleSize
audStereo

recSceneDetectionParmsRec

Selectors: recmod_StartSceneSearch

Used for scene searching. searchingForward is provided as a hint as the state of the device, and
the reportSceneFunc should be used to notify Premiere of a scene boundary.

typedef struct {
 void *callbackID;
 ReportSceneFunc reportSceneFunc;
 int searchingForward;
 int searchMode;
 short isDropFrame;
 csSDK_int32 earliestTimecode;
 csSDK_int32 greatestTimecode;
} recSceneDetectionParmsRec;

callbackID Required for reportSceneFunc
reportSceneFunc Use this to report the scenes
searchingForward True if the tape is playing forward
searchMode Either sceneSearch_FastScan or scene­

Search_SlowScan
isDropFrame True if drop-frame, false otherwise
earliestTimecode Only set for sceneSearch_SlowScan: in

point for range to report scene edge
greatestTimecode Only set for sceneSearch_SlowScan: out

point for range to report scene edge

Export Controllers • 195Adobe Premiere Pro SDK Guide

7Export Controllers

Starting in Premiere Pro 5.0.2, an export controller can drive any exporter to generate a file in
any format and perform custom post-processing operations. Developers wanting to integrate
Premiere Pro with an asset management system will want to use this API instead.

An export controller adds its own custom menu item to the File > Export submenu. When the
user chooses the menu item, the plug-in is called with a TimelineID, which represents the
current sequence. Although details on the current sequence are not passed in, the export control-
ler can use the Sequence Info Suite to query for various properties. The export controller can then
optionally display any custom modal UI to allow the user to set any parameters for the export.
This UI will need to be provided by the export controller.

The export controller should then call ExportFile in the Export Controller Suite, which takes
the TimelineID, a path to an exporter preset, and a path for the output. This will tell Premiere
Pro to handle the export, displaying progress. The call will return either a success value, an error,
or that the user canceled. During the export, the UI will be blocked, just as when doing a stan-
dard export that doesn’t use the Adobe Media Encoder Render Queue.

Once Premiere Pro completes the export, the call will return to the export controller. The plug-
in can then perform any post-processing operations, such as transferring the newly exported file
over the network, or registering the file in an asset management system.

Exporters • 196Adobe Premiere Pro SDK Guide

8Exporters

Exporters are used to export video, audio, and markers in any format. Exporters get individual
video frames in a requested pixel format (generally, uncompressed video) and uncompressed
audio. The exporter is responsible for any compression of the video and audio data, and wrapping
the output in a file format. To reuse an existing exporter, you may provide an export controller.

Exporters can be used from within Premiere Pro, or from Adobe Media Encoder. From within
Premiere Pro, go to the File > Export > Media dialog. From there, the Export Settings dialog
appears. The format chosen in the Format drop-down determines the exporter used, and the
exporter provides the parameter settings and summary displayed in the Export Settings dialog.

Exporters can optionally provide hardware acceleration by coordinating with a renderer plug-in
to render timeline segments. Legacy editing modes are formed by the combination of an exporter
and a player; the exporter generates preview files and the player manages the cutlist.

If you’ve never developed an exporter before, you can skip the What’s New sections, and go di-
rectly to Getting Started.

What’s New

What’s New in CC

A new Captions tab has been added to the Export Settings, for Closed Captioning export. For all
formats, a sidecar file containing the captions can be exported. To learn how exporters can op-
tionally embed Closed Captioning directly in the output file, see the Closed Captioning section.

Two new selectors have been added to GetExportSourceInfo in the Export Info Suite. You can
use kExportInfo_UsePreviewFiles to check if the user has checked “Use Previews” in
the Export Settings dialog. If so, if possible, reuse any preview files already rendered. You can use
kExportInfo_NumAudioChannels to get the number of audio channels in a given source.

Exporters • 197Adobe Premiere Pro SDK Guide

This can be used to automatically initialize the audio channel parameter in the Audio tab of the
Export Settings to match the source.

In the Export Param Suite, a new function, MoveParam(), can be used to move an existing
parameter to a new location.

What’s New in CS6

Exporters can now use the Exporter Utility Suite for “push” model compression. The exporter
host can simply push frames to a thread-safe exporter-specified callback. This will cut down on
the code previously required for render loop management. It should also yield substantial perfor-
mance increases for exporters that haven’t finely tuned their multithreaded rendering. The “pull”
model is still supported, and required for Encore and legacy versions of Premiere Pro and Media
Encoder.

The new Export Standard Param Suite provides the standard parameters used in many built-in
exporters. This can greatly reduce the amount of code needed to manage standard parameters for
a typical exporter, and guarantee consistency with built-in exporters.

Stereoscopic video is now supported when exporting directly from Premiere Pro. In other
words, when exports are queued to run in Adobe Media Encoder, they can not get stereo-
scopic video. Note that currently stereoscopic exporters must use the “pull” model and the new
MakeVideoRendererForTimelineWithStreamLabel() to get rendered frames from
multiple video streams.

Export Param Suite now adds SetParamDescription(), to set tooltip strings for param-
eters. For the three line Export Summary description in the Export Settings dialog, we’ve swapped
the 2nd and 3rd lines so that the bitrate summary comes after the audio summary. We’ve re-
named the structure to make developers aware of this during a recompile.

Adobe Media Encoder now includes a Preset Browser that provides more organization for presets.
Make sure your presets take advantage of this organization, and are shown in your desired proper
location in the Preset Browser.

Exporters can now set events (error, warning, or info) for a specific encode in progress in the
Adobe Media Encoder render queue. The existing call in the Error Suite is not sufficient for AME
to relate the event to a specific encode. So the new Exporter Utility Suite provides a way for ex-
porters running either in Premiere Pro or Adobe Media Encoder to log events. These events are
displayed in the application UI, and are also added to the AME encoding log.

Multiple exporters are now supported in a single plug-in. To support this, exExporterIn­
foRec is now set to exporters on exShutdown.

Exporters • 198Adobe Premiere Pro SDK Guide

exQueryOutputSettingsRec has a new member, outUseMaximumRenderPreci­
sion, moving knowledge of this render parameter to the exporter.

What’s New in CS5.5

A new call, RenderVideoFrameAndConformToPixelFormat, has been added to the
Sequence Render Suite. This allows an exporter to request a rendered frame and then conform it
to a specific pixel format.

A new return value, exportReturn_ParamButtonCancel, has been added to signify that
an exporter is returning from exSelParamButton without modifying anything.

Export Controller API

We have opened up a new export controller API that can drive any exporter to generate a file in
any format and perform custom post-processing operations. Developers wanting to integrate
Premiere Pro with an asset management system will want to use this API instead.

What’s New in CS5

exQueryOutputFileListAfterExportRec is now exQueryOutputFileListRec,
with a slight change to the structure order.

We’ve also fixed a few bugs, such as bug 1925419, where all sliders would be given a checkbox to
disable the control, as if exParamFlag_optional had been set.

We’ve made a couple new attributes available to exporters via the GetExportSourceInfo()
call - the video poster frame time, and the source timecode.

3rd-party exporters can now be used to transcode assets to MPEG-2 or Blu-ray compliant files.
Please refer to the Guidelines for Exporters in Encore for instructions on how to set up your ex-
porter so that Encore can use it for transcoding.

Porting From the Compiler API

The export API replaces the old compiler API from CS3 and earlier versions. The export API
combines the processing speed and quality of the old compiler API, with the UI flexibility of
Media Encoder. Although the selectors and structures have been renamed and reorganized, much
of the code that deals with rendering and writing frames is mostly the same.

The parameter UI is what has changed the most. Rather than having a standard set of param-
eters as standard compilers had, or having a completely custom UI as custom compilers had, in

Exporters • 199Adobe Premiere Pro SDK Guide

the new exporter API, all parameters must be explicitly added using the Export Param Suite.
First register the parameters during exSelGenerateDefaultParams, and then provide the localized
strings and constrained parameter values during exSelPostProcessParams. When the exporter is
sent exSelExport to export, get the parameter values, again using the Export Param Suite.

Getting Started

Start your plug-in by modifying the SDK sample. Step through the code in your debugger to learn
the order of events.

Media Encoder as a Test Harness

It may be faster to developing exporters using Media Encoder, since it is a lighter-weight applica-
tion. However, you will want to test your exporter in Premiere Pro, to make sure the behavior is
the same as when running in Media Encoder.

Adding Parameters

Starting in CS6, the Export Standard Param Suite provides a way to add several basic sets of pa-
rameters, whether for video, audio, still sequences, etc. Beyond the standard parameters, custom
defined parameters can be added using the Export Param Suite.

First register the parameters during exSelGenerateDefaultParams. Then provide the localized
strings and min/max parameter values during exSelPostProcessParams. When the exporter is sent
exSelExport to export, get the user-specified parameter values using the Export Param Suite.

Updating Parameters Dynamically

Parameters can be updated dynamically based on user interaction with any related parameter.
The time to update is during the exSelValidateParamChanged selector. Use ChangeParam in the
Export Param Suite to make the change. Then, set exParamChangedRec.rebuildAll­
Params to true before returning. If you don’t set that flag, parameters may appear out of order
after a change.

Supporting “Match Source”

The exporter must set exExporterInfoRec.canMatchSource to true. This will add the
Match Source button to the Video tab in the Export Settings.

Exporters • 200Adobe Premiere Pro SDK Guide

Next, if the Match Source button is pressed in the Export Settings, exPostProcessParams­
Rec.doConformToMatchParams will be true. The exporter should respond by updating
any parameter values it can to match the source settings.

Get Video Frames and Audio Samples

Starting in CS6, exporters can use the new push model, or the legacy pull model for obtaining
frames. The new push model is supported starting in CS6, and the pull model is still supported.
Developing for Encore and previous versions of Premiere Pro and Media Encoder requires using
the pull model.

Push Model

Using the push model, the exporter host can simply push frames to a thread-safe exporter-spec-
ified callback. Use DoMultiPassExportLoop in the Exporter Utility Suite to register the
callback.

Compared with the pull model, this will cut down on the code previously required for render
loop management. It should also yield substantial performance increases for exporters that
haven’t finely tuned their multithreaded rendering.

Pull Model

Using the pull model to get video and audio data involves making calls to the host to ask for this
data. Use the Sequence Render Suite to get individual video frames, and the Sequence Audio Suite
to get buffers of audio samples.

Video frames can be requested synchronously or asynchronously. The asynchronous method can
yield better performance, but it is up to the exporter to provide its asynchronous render loop.

Handling a Pause or Cancel by the User (Pull Model only)

Push model export does not require any special code to handle pause or cancel by the user.
For pull model export, the way to check if the user has paused or cancelled the export is to call
UpdateProgressPercent in the Export Progress Suite, and check the return value. If
the return value is suiteError_ExporterSuspended, the user has hit the pause but-
ton, which is only available in the Media Encoder UI. If the return value is exportReturn_
Abort, then the export has been cancelled by the user.

If UpdateProgressPercent returns suiteError_ExporterSuspended, then the
exporter should next call WaitForResume, which will block until the user has unpaused the
export.

Exporters • 201Adobe Premiere Pro SDK Guide

If UpdateProgressPercent returns exportReturn_Abort, the exporter should take
steps to abort the export and clean up. Note that the exporter can still continue to ask for video
frames and audio samples after a cancel has been received, which is useful in certain circum-
stances, such as if an exporter needs a few more frames to complete an MPEG GOP, or if it wants
to include the audio for the video exported up to the point of cancel. This allows the exporter to
generate well-formed output files, even in the case of a cancel.

Creating Presets

Create your own presets using the Export Settings UI, either from within Premiere Pro, or Media
Encoder. Just modify the parameters the way you want, and hit the Save icon to save the preset to
disk. The presets are saved with the extension ‘.epr’.

Starting in CS5, all the presets are saved to the same location, regardless of whether saved from
Premiere Pro or Media Encoder:

On Windows 7, presets are saved here:
[User folder]\AppData\Roaming\Adobe\Common\AME\[version]\Presets\

On Mac OS:
~/Library/Preferences/Adobe/Common/AME/[version]/Presets/

In CS4, where the files are saved depends on whether you’ve opened the Export Settings UI in
Premiere Pro or Media Encoder:

Media Encoder presets
On Windows Vista, presets are saved here:
[User folder]\AppData\Roaming\Adobe\Adobe Media Encoder\[ver­
sion]\Presets\
On Windows XP:
[Documents and Settings folder]\[user name]\Application Data\
Adobe\Adobe Media Encoder\[version]\Presets\
On Mac OS:
~/Library/Preferences/Adobe/Adobe Media Encoder/[version]/
Presets/

Premiere Pro presets
On Windows Vista, presets are saved here:
[User folder]\AppData\Roaming\Adobe\Premiere Pro\[version]\
Presets\
On Windows XP:
[Documents and Settings folder]\[user name]\Application Data\
Adobe\Premiere Pro\[version]\Presets\

Exporters • 202Adobe Premiere Pro SDK Guide

On Mac OS:
~/Library/Preferences/Adobe/Adobe Premiere Pro/[version]/Presets/

AME Preset Browser

Starting in CS6, Adobe Media Encoder has a Preset Browser with provides a structured organiza-
tion of presets. Third-party presets can be added to any folder or subfolder within the main cat-
egories. Once you have created a preset, it will default to the Other folder. You can set the desired
folder location in the <FolderDisplayPath> tag in the preset XML. For example, if you set
it to:

<FolderDisplayPath>System Presets/Image Sequence/PNG</
FolderDisplayPath>

then AME will display the preset in the System Presets > Image Sequence > PNG folder. It is es-
sential to use: “System Presets/xxx/” where the xxx must be any of the existing main categories
(use the English name for this). Only one level below can you can create a custom-named folder.
If the folder doesn’t already exist, it will be created.

The Preset Browser data is cached in a file at:
[User Folder]\AppData\Roaming\Adobe\Common\AME\[version]\Presets\
PresetTree.xml
If you want to force a refresh of the Preset Browser data, just quit AME, delete this file, and re-
launch AME.

Installation in CS4

For better performance, in CS4, we recommend you install any presets for your exporter in the
application folder for Premiere Pro and Media Encoder. For both Windows and Mac OS:
[App installation path]\MediaIO\systempresets\[exporter subfold­
er]
The subfolder must be named based on the hexadecimal fourCCs of the ClassID and fi­
letype of the exporter. For example, the SDK exporter has a ClassID of ‘DTEK’ or
0x4454454B, and a filetype of ‘SDK_’ or 0x53444B5F. So the subfolder must be named
‘4454454B_53444B5F’. For convenience, you can find the ClassID and filetype
fourCCs in the preset file itself, in a decimal representation.

Parameter Caching

During development, when you modify parameters in your exporter and reload the plug-in into
the host, the Settings UI may continue to show stale parameter data. New parameters that you
have added may not appear, or old ones may continue to appear. Or if you have changed the UI
for an existing parameter, it may not take effect.

Exporters • 203Adobe Premiere Pro SDK Guide

At a minimum, any old presets must be deleted. This includes Media Encoder presets and
Premiere Pro presets. After deleting the old presets, there are two options, depending on whether
the an older version of the exporter has already been distributed and is in use.

Increment the Parameter Version

If an older version of the exporter is already being used by customers, you’ll need to use param-
eter versioning. During exSelGenerateDefaultParams, you should call SetParamsVersion()
in the Export Param Suite and increment the version number.

After that, create new presets and sequence encoder presets (if needed) using the new set of pa-
rameters. Make sure your installer removes the old presets, and installs the new ones.

Flush the Parameter Cache

If you don’t increment the parameter version, you can manually flush the parameter cache in a
few steps. After you’ve deleted the old presets, do the following:

1) Delete hidden presets that were created by the hosts for the most recently used parameter set-
tings. Look for a file called Placeholder Preset.epr in both the folders above the Media
Encoder presets and the Premiere Pro presets.
2) Delete batch.xml, used by Media Encoder. This is also in the folder above the Media
Encoder presets. Deleting this is equivalent to deleting the items out of the Media Encoder render
queue.
3) Delete Premiere Pro sequence encoder presets that use the exporter, if any
4) Even after deleting all the old presets, Media Encoder may initially show old cached parameter
UI. In the Settings UI, just switch to a different format and then back to yours.

Multichannel Audio Layouts

To support multichannel audio layouts, kPrAudioChannelType_MaxChannel should be
the type requested in MakeAudioRenderer(). The audio buffers you use for GetAudio()
should likewise be an array of kPrAudioChannelType_MaxChannel channels, and yes,
this means you may be allocating more space than actually used.

In the exporter’s Audio tab UI, you can provide a parameter to choose between various multi-
channel audio layouts. You can compare your settings to what we have with the built-in formats,
QuickTime and MXF (such as MXF OP1a and DNxHD). From the user selection in your audio
export settings (e.g., 2x stereo, etc), you will know how many of those channels passed back in
GetAudio() should actually be written to the file.

Here’s a helpful video on audio track mapping:

Exporters • 204Adobe Premiere Pro SDK Guide

https://www.video2brain.com/en/lessons/changes-in-audio-tracks-and-merged-clip-audio

Closed Captioning

Starting in CC, the Export Settings includes a new Captions tab, for Closed Captioning export.
For all formats, a sidecar file containing the captions can be exported. Additionally, exporters
can optionally embed Closed Captioning directly in the output file. First, the exporter must set
exExporterInfoRec.canEmbedCaptions to true. This will add the option to embed the
captions in the output file, from the Export Options drop-down in the Captions tab. If this op-
tion is selected during export, exDoExportRec.embedCaptions will be true. The exporter
should retrieve the captions using the Captioning Suite.

Multiple File Formats

To support more than one file format in a single exporter, describe one format at a time during
exSelStartup. After describing the first one, return exportReturn_IterateExporter from
exSelStartup, and the exporter will be called again to describe the second format, and so on. After
describing the last format, return exportReturn_IterateExporter, and the exporter will
be called yet again. This time, return exportReturn_IterateExporterDone.

Use a unique fileType for each format. When you are later sent exSelGenerateDefaultParams,
exSelPostProcessParams, etc, you’ll want to pay attention to the fileType, and respond according
to the format.

Exporters Used for Editing Modes

An exporter that is used in an editing mode must have a codec parameter, and that parameter ID
must be ADBEVideoCodec. If Premiere Pro cannot find this parameter, it will not be able to
reopen projects in the custom editing mode, and will revert the project to Desktop mode.

Sequence Encoder Presets

Sequence preview presets are now required for editing modes. These contain the exporter param-
eters to generate preview files. This makes preview file formats much easier to define, by using
the Media Encoder or Premiere Pro UI to create presets, rather than directly editing XML.

To create a sequence encoder preset:
1) Create a preset. The name that you give it will be the name that will be used in the Sequence
Settings > General > Preview File Format drop-down.
2) Make sure this preset is installed in the application folder for Premiere Pro, along with the
other sequence presets:

Exporters • 205Adobe Premiere Pro SDK Guide

On Windows, they should be installed here:
[App installation path]\Settings\EncoderPresets\SequencePreview\[editing mode GUID]*.epr
On MacOS, it is basically the same (inside the application package):
[App installation path]/[Premiere Pro package]/Contents/Settings/EncoderPresets/
SequencePreview/[editing mode GUID]/*.epr

As you can see by the installation paths above, Premiere Pro associates the sequence preview pre-
sets with the editing mode they go with, by using the presets in the folder that matches the GUID
of the editing mode. The editing mode GUID is defined in the editing mode XML file, using the
<EditingMode.ID> tag.

Adding new Preview File Formats to Existing Editing Modes

You can not only provide sequence preview presets for your own editing mode, but you could
even add additional sequence preview presets for one of the built-in editing modes. Editing
mode GUIDs for built-in editing modes can be found in the Adobe Editing Modes.
xml file. For example, the Desktop editing mode on Windows has the GUID 9678AF98-
A7B7-4bdb-B477-7AC9C8DF4A4E. On Mac OS it is 795454D9-D3C2-429d-9474-
923AB13B7018.

You can additionally restrict the list and specify which one is chosen by default, by editing the
<PresetComments> tag in the preset file.
If the value of the tag starts with “IsConstrained,”, then a comma delimited list of 4ccs follows
that dictates which codecs are available, and the first one is chosen by default. For example,
QuickTime DV NTSC.epr for the Mac DV NTSC editing mode has this:
<PresetComments>IsConstrained,dvc </PresetComments>
Which restricts the codec selection of the exporter to be only the single codec choice.

Stereoscopic Video

Note that currently stereoscopic exporters must use the old “pull” model, and only receive ste-
reoscopic video when exporting directly from Premiere Pro. In other words, when exports are
queued to run in Adobe Media Encoder, they will not get stereoscopic video.

To get rendered frames for both left and right eye, use the Video Segment Suite to request the left
and right cutlists, and render frames from both. An exporter can tell if segments in both of them
are identical (implying that they have nothing stereoscopic about them) by looking at the segment
hashes, and you can tell if two frames are identical (by looking at the request identifiers).

Exporters • 206Adobe Premiere Pro SDK Guide

Timeline Segments in Exporters

The timeline segments available to exporters do not always fully describe the sequence being ex-
ported. To consistently get timeline segments that fully describe the sequence, an exporter needs
to work along with a renderer plug-in.

During a sequence export, Premiere Pro makes a copy of the project file and passes it to Media
Encoder. Media Encoder takes that project and uses the PProHeadless process to generate ren-
dered frames. So when an exporter, which is running in Media Encoder, parses the sequence, it
only has a very high-level view. It sees the entire sequence as a single clip, and sees any optional
cropping or filters as applied effects. So when parsing that simple, high-level sequence, if there
are no effects, an exporter can just use the MediaNode’s ClipID with the Clip Render Suite to
get frames directly from the PProHeadless process. In the PProHeadless process, a renderer plug-
in can step in, parse the real sequence in all its glory, and optionally provide frames in a custom
pixel format.

When rendering preview files, Premiere Pro does the rendering without Media Encoder, so an
exporter can get the individual segments for each clip, similar to before.

Smart Rendering

Under very specific circumstances, an exporter can request compressed frames, avoiding unnec-
essary de/recompression. This would be done by providing both exporter and renderer plug-ins
that parse timeline segments. If the source can be copied over to the destination, the compressed
frames can be passed in a custom pixel format. These compressed frames are not guaranteed,
however, so the exporter should be prepared to handle uncompressed frames.

Entry Point

DllExport PREMPLUGENTRY xSDKExport (
 csSDK_int32 selector,
 exportStdParms* stdParmsP,
 void* param1,
 void* param2)

selector is the action the host wants the exporter to perform. stdParms provides callbacks to
obtain additional information from the host or to have the host perform tasks. Parameters 1 and
2 vary with the selector; they may contain a specific value or a pointer to a structure. Return ex­
portReturn_ErrNone if successful, or an appropriate return code.

Exporters • 207Adobe Premiere Pro SDK Guide

Standard Parameters

A pointer to this structure is sent from the host to the plug-in with every selector.

typedef struct {
 csSDK_int32 interfaceVer;
 plugGetSPBasicSuiteFunc* getSPBasicSuite;
} exportStdParms;

Member Description
interfaceVer Exporter API version

Premiere Pro CC - prExportVersion400
Premiere Pro CS6 - prExportVersion300
Premiere Pro CS5.5 - prExportVersion250
Premiere Pro CS5 - prExportVersion200
Premiere Pro 4.0.1 through 4.2.1 - prExportVersion101
Premiere Pro CS4 - prExportVersion100

getSPBasicSuite This very important call returns the SweetPea suite that allows
plug-ins to acquire and release all other SweetPea suites.

SPBasicSuite* getSPBasicSuite();

Selector Table

This table summarizes the various selector commands an exporter can receive.

Selector param1 param2
exSelStartup exExporterInfoRec* unused
exSelBeginInstance exExporterInstanceRec* unused
exSelGenerateDefaultParams exGenerateDefaultParamRec* unused
exSelPostProcessParams exPostProcessParamsRec* unused
exSelValidateParamChanged exParamChangedRec* unused
exSelGetParamSummary exParamSummaryRec* unused
exSelParamButton exParamButtonRec* unused
exSelExport exDoExportRec* unused
exSelQueryExportFileExtension exQueryExportFileExtensionRec* unused
exSelQueryOutputFileList exQueryOutputFileList* unused
exSelQueryStillSequence exQueryStillSequenceRec* unused
exSelQueryOutputSettings exQueryOutputSettingsRec* unused
exSelValidateOutputSettings exValidateOutputSettingsRec* unused

Exporters • 208Adobe Premiere Pro SDK Guide

exSelEndInstance exExporterInstanceRec* unused
exSelShutdown exExporterInfoRec* unused

Selector Descriptions

This section provides a brief overview of each selector and highlights implementation issues.
Additional implementation details are at the end of the chapter.

exSelStartup

param1 - exExporterInfoRec *
param2 - unused

Sent during application launch, unless the exporter has been cached. A single exporter can sup-
port multiple codecs and file extensions. exExporterInfoRec describes the exporter’s attri-
butes, such as the format display name.

exSelBeginInstance

param1 - exExporterInstanceRec *
param2 - unused

Allocate any private data.

exSelGenerateDefaultParams

param1 - exGenerateDefaultParamRec *
param2 - unused

Set the exporter’s default parameters using the Export Param Suite.

exSelPostProcessParams

param1 - exPostProcessParamsRec *
param2 - unused

Post process parameters. This is where the localized strings for the parameter UI must be pro-
vided.

Exporters • 209Adobe Premiere Pro SDK Guide

exSelValidateParamChanged

param1 - exParamChangedRec *
param2 - unused

Validate any parameters that have changed. Based on a change to a parameter value, the exporter
may update other parameter values, or show/hide certain parameter controls, using the Export
Param Suite. To notify the host that the plug-in is changing other parameters, set exParam­
ChangedRec.rebuildAllParams to a non-zero value.

exSelGetParamSummary

param1 - exParamSummaryRec *
param2 - unused

Provide a text summary of the current parameter settings, which will be displayed in the sum-
mary area of the Export Settings dialog.

exSelParamButton

param1 - exParamButtonRec *
param2 - unused

Sent if exporter has one or more buttons in its parameter UI, and the user clicks one of the but-
tons in the Export Settings. The ID of the button pressed is passed in exParamButtonRec.
buttonParamIdentifier. Display any dialog using platform-specific UI, collect any user in-
put, and save any changes back to privateData. If the user cancels the dialog, return expor­
tReturn_ParamButtonCancel to signify that nothing in the privateData has changed.

exSelExport

param1 - exDoExportRec *
param2 - unused

Do the export! Sent when the user starts an export to the format supported by the exporter, or if
the exporter is used in an Editing Mode and the user renders the work area.

Single file exporters are sent this selector only once per export (e.g. AVI, QuickTime). To create a
single file, setup a loop where you request each frame in the startTime to endTime range us-
ing one of the render calls in the Sequence Render Suite and GetAudio in the Sequence Audio
Suite. For better performance, you can use the asynchronous calls in the Sequence Render Suite to
have the host render multiple frames on multiple threads.

Exporters • 210Adobe Premiere Pro SDK Guide

Still frame exporters are sent exSelExport for each frame in the sequence (e.g. numbered TIFFs).
The host will name the files appropriately.

Save render time by checking to see if frames are repeated. Inspect the SequenceRender_
GetFrameReturnRec.repeatCount returned from a render call, which holds a frame
repeat count.

exSelQueryExportFileExtension

param1 - exQueryExportFileExtensionRec *
param2 - unused

For exporters that support more than one file extension, specify an extension given the file type. If
this selector is not supported by the exporter, the extension is specified by the exporter in exEx­
porterInfoRec.fileTypeDefaultExtension.

exSelQueryOutputFileList

param1 - exQueryOutputFileListRec *
param2 - unused

For exporters that export to more than one file. This is called before an export for the host to find
out which files would need to be overwritten. It is called after an export so the host will know
about all the files created, for any post encoding tasks, such as FTP. If this selector is not support-
ed by the exporter, the host application will only know about the original path.

This selector will be called three times. On the first call, the plug-in fills out numOutputFiles.
The host will then make numOutputFiles count of outputFileRecs, but empty. On the
second call, the plug-in fills out the path length (incl trailing null) for each exOutputFileRec
element in outputFileRecs. The host will then allocate all paths in each outputFileRec.
On the third call, the plug-in fills in the path members of the outputFileRecs.

exSelQueryStillSequence

param1 - exQueryStillSequenceRec *
param2 - unused

The host application asks a still-only exporter if it wants to export as a sequence, and at what
frame rate.

Exporters • 211Adobe Premiere Pro SDK Guide

exSelQueryOutputSettings

param1 - exQueryOutputSettingsRec *
param2 - unused

The host application asks the exporter for general details about the current settings. This is a re-
quired selector.

exSelValidateOutputSettings

param1 - exValidateOutputSettingsRec *
param2 - unused

The host application asks the exporter if it can export with the current settings. The exporter
should return exportReturn_ErrLastErrorSet if not, and the error string should be set
to a description of the failure.

exSelEndInstance

param1 - exExporterInstanceRec *
param2 - unused

Deallocate any private data.

exSelShutdown

param1 - unused
param2 - unused

Sent immediately before shutdown. Free all remaining memory and close any open file handles.

Return Codes

Return Code Reason
exportReturn_ErrNone Operation has completed without error.
exportReturn_Abort User aborted the export.
exportReturn_Done Export finished normally.
exportReturn_InternalError Return this if none of the other errors apply.
exportReturn_OutOfDiskSpace Out of disk space error.
exportReturn_BufferFull The offset into the buffer would overflow it.

Exporters • 212Adobe Premiere Pro SDK Guide

exportReturn_ErrOther The vaguer the better, right?
exportReturn_ErrMemory Out of memory.
exportReturn_ErrFileNotFound File not found.
exportReturn_
ErrTooManyOpenFiles

Too many open files.

exportReturn_ErrPermErr Permission violation.
exportReturn_ErrOpenErr Unable to open the file.
exportReturn_ErrInvalidDrive Invalid drive.
exportReturn_ErrDupFile Duplicate filename.
exportReturn_ErrIo File I/O error.
exportReturn_ErrInUse File is in use.
exportReturn_IterateExporter Return value from exSelStartup to request exporter

iteration.
exportReturn_
IterateExporterDone

Return value from exSelStartup to indicate there
are no more exporters.

exportReturn_
InternalErrorSilent

Return error code from exSelExport to put a cus-
tom error message on screen just before returning
control to the host.

exportReturn_
ErrCodecBadInput

A video codec refused the input format.

exportReturn_ErrLastErrorSet The exporter is returning an error using the Error
Suite.

exportReturn_
ErrLastWarningSet

The exporter is returning a warning using the
Error Suite.

exportReturn_ErrLastInfoSet The exporter is returning information using the
Error Suite.

exportReturn_
ErrExceedsMaxFormatDuration

The exporter (or the host) has deemed the dura-
tion of the export to be too large.

exportReturn_
VideoCodecNeedsActivation

The current video codec is not activated and can-
not be used.

exportReturn_
AudioCodecNeedsActivation

The current audio codec is not activated and can-
not be used.

exportReturn_
IncompatibleAudioChannelType

The requested audio channels are not compatible
with the source audio.

exportReturn_
IncompatibleVideoCodec

New in CS5. User tried to load a preset with an
invalid video codec

exportReturn_
IncompatibleAudioCodec

New in CS5. User tried to load a preset with an
invalid audio codec

exportReturn_
ParamButtonCancel

New in CS5.5. Return this from exSelParamBut­
ton if the user cancelled settings dialog by pressing
cancel button.

Exporters • 213Adobe Premiere Pro SDK Guide

exportReturn_Unsupported Unsupported selector.

Structures

Structure Sent with selector
exDoExportRec exSelExport
exExporterInfoRec exSelStartup
exExporterInstanceRec exSelBeginInstance and exSelEndInstance
exGenerateDefaultParamRec exSelGenerateDefaultParams
exParamButtonRec exSelParamButton
exParamChangedRec exSelValidateParamChanged
exParamSummaryRec exSelGetParamSummary
exPostProcessParamsRec exSelPostProcessParams
exQueryExportFileExtensionRec exSelQueryExportFileExtension
exQueryOutputFileListRec exSelQueryOutputFileList
exQueryOutputSettingsRec exSelQueryOutputSettings
exQueryStillSequenceRec exSelQueryStillSequence
exValidateOutputSettingsRec exSelValidateOutputSettings

Structure Descriptions

exDoExportRec

Selector: exSelExport

Provides general export settings. The exporter should retrieve the parameter settings from the
Export Param Suite.

typedef struct {
 csSDK_uint32 exporterPluginID;
 void* privateData;
 csSDK_uint32 fileType;
 csSDK_int32 exportAudio;
 csSDK_int32 exportVideo;
 PrTime startTime;
 PrTime endTime;
 csSDK_uint32 fileObject;
 PrTimelineID timelineData;

Exporters • 214Adobe Premiere Pro SDK Guide

 csSDK_int32 reserveMetaDataSpace;
 csSDK_int32 maximumRenderQuality;
 csSDK_int32 embedCaptions
} exDoExportRec;

exporterPluginID The host’s internal identifier for this exporter, used for various
suite calls, such as in the Sequence Render Suite and Sequence
Audio Suite.

privateData Data allocated and managed by the exporter.
fileType The file format four character code set by the exporter during

exSelStartup. Indicates which format the exporter should write,
since exporters can support multiple formats.

exportAudio If non-zero, export audio.
exportVideo If non-zero, export video.
startTime The start time of the sequence to export.
endTime The end time of the sequence to export. If startTime is 0, also

the total durection to export. Range specified is
[startTime, endTime), meaning the endTime is not actu-
ally included in the range.

fileObject For use with the Export File Suite, to get and manipulate the file
specified by the user.

timelineData Handle used for the Timeline Functions.
reserveMetaDataS­
pace

Amount to reserve in a file for metadata storage.

maximumRenderQual­
ity

If non-zero, the exporter should set SequenceRender_
ParamsRec.inRenderQuality and inDeinterlace­
Quality to kPrRenderQuality_Max.

embedCaptions New in CC. If non-zero, the exporter should embed captions
obtained from the Captioning Suite.

exExporterInfoRec

Selector: exSelStartup and exSelShutdown (starting in CS6)

Describe the exporter’s capabilities by filling out this structure during exSelStartup. For
each filetype, populate exExporterInfoRec and return exportReturn_
IterateExporter. exSelStartup will then be resent. Repeat the process until there are no
more file formats to describe, then return exportReturn_IterateExporterDone. The
fileType indicates which format the exporter should currently work with in subsequent calls.

typedef struct {
 csSDK_uint32 unused;

Exporters • 215Adobe Premiere Pro SDK Guide

 csSDK_uint32 fileType;
 prUTF16Char fileTypeName[256];
 prUTF16Char fileTypeDefaultExtension[256];
 csSDK_uint32 classID;
 csSDK_int32 exportReqIndex;
 csSDK_int32 wantsNoProgressBar;
 csSDK_int32 hideInUI;
 csSDK_int32 doesNotSupportAudioOnly;
 csSDK_int32 canExportVideo;
 csSDK_int32 canExportAudio;
 csSDK_int32 singleFrameOnly;
 csSDK_int32 maxAudiences;
 csSDK_int32 interfaceVersion;
 csSDK_uint32 isCacheable;
 csSDK_uint32 canConformToMatchParams;
 csSDK_uint32 canEmbedCaptions;
} exExporterInfoRec;

fileType The file format four character code (e.g. ‘AVIV’ = Video for
Windows, ‘MooV’ = QuickTime).

fileTypeName The localized display name for the fileype.
fileTypeDefaultEx­
tension

The default extension for the filetype. An exporter can support
multiple extensions per filetype, by implementing exSelQueryEx­
portFileExtension.

classID Class identifier for the module, differentiates between exporters
that support the same filetype and creates associations between
different Media Abstraction Layer plug-ins.

exportReqIndex If an exporter supports multiple filetypes, this index will be in-
cremented by the host for each call, as the exporter is requested
to describe its capabilities for each filetype. Initially zero, incre-
mented by the host each time the exporter returns exportRe­
turn_IterateExporter.

wantsNoProgressBar If non-zero, the default exporter progress dialog will be turned
off, allowing the exporter to display its own progress dialog. The
exporter also will not get exportReturn_Abort errors from
the host during callbacks – it must detect an abort on its own, and
return exportReturn_Abort from exSelExport if the user
aborts the export.

hideInUI Set this to non-zero if this filetype should only be used for mak-
ing preview files, and should not be visible as a general export
choice.

doesNotSupportAu­
dioOnly

Set this to non-zero for filetypes that do not support audio-only
exports.

Exporters • 216Adobe Premiere Pro SDK Guide

canExportVideo Set this to non-zero if the exporter can output video.
canExportAudio Set this to non-zero if the exporter can output audio.
singleFrameOnly Set this to non-zero if the exporter makes single frames (used by

still image exporters).
maxAudiences
interfaceVersion Exporter API version that the plug-in supports.
isCacheable New in CS5. Set this non-zero to have Premiere Pro cache this

exporter.
canConformToMatch­
Params

New in CC. Set this to non-zero if the exporter wants to support
the Match Source button.

canEmbedCaptions New in CC. Set this to non-zero if the exporter can embed Closed
Captioning directly in the file.

exExporterInstanceRec

Selector: exSelBeginInstance and exSelEndInstance

Provides access to the privateData for the indicated filetype, so that the exporter can al-
locate privateData and pass it to the host, or deallocate it.

typedef struct {
 csSDK_uint32 exporterPluginID;
 csSDK_uint32 fileType;
 void* privateData;
} exExporterInstanceRec;

exporterPluginID The host’s internal identifier for this exporter. Do not modify.
fileType The file format four character code set by the exporter during

exSelStartup.
privateData Data allocated and managed by the exporter.

exGenerateDefaultParamRec

Selector: exSelGenerateDefaultParams

Provides access to the privateData for the indicated filetype, so that the exporter can gen-
erate the default parameter set.

typedef struct {
 csSDK_uint32 exporterPluginID;
 void* privateData;

Exporters • 217Adobe Premiere Pro SDK Guide

 csSDK_uint32 fileType;
} exExporterInstanceRec;

exporterPluginID The host’s internal identifier for this exporter. Do not modify.
privateData Data allocated and managed by the exporter.
fileType The file format four character code set by the exporter during

exSelStartup.

exParamButtonRec

Selector: exSelParamButton

Provides access to the privateData for the indicated filetype, and discloses the specific but-
ton hit by the user, since there can be multiple button parameters.

typedef struct {
 csSDK_uint32 exporterPluginID;
 void* privateData;
 csSDK_uint32 fileType;
 csSDK_int32 exportAudio;
 csSDK_int32 exportVideo;
 csSDK_int32 multiGroupIndex;
 exParamIdentifier buttonParamIdentifier;
} exParamButtonRec;

exporterPluginID The host’s internal identifier for this exporter. Do not modify.
privateData Data allocated and managed by the exporter.
fileType The file format four character code set by the exporter during

exSelStartup.
exportAudio If non-zero, the current settings are set to export audio.
exportVideo If non-zero, the current settings are set to export video.
multiGroupIndex Discloses the index of the multi-group, containing the button

hit by the user.
buttonParamIdentifier Discloses the parameter ID of the button hit by the user.

exParamChangedRec

Selector: exSelValidateParamChanged

Provides access to the privateData for the indicated filetype, and discloses the specific
parameter changed by the user. To notify the host that the plug-in is changing other parameters,
set rebuildAllParams to a non-zero value.

Exporters • 218Adobe Premiere Pro SDK Guide

typedef struct {
 csSDK_uint32 exporterPluginID;
 void* privateData;
 csSDK_uint32 fileType;
 csSDK_int32 exportAudio;
 csSDK_int32 exportVideo;
 csSDK_int32 multiGroupIndex;
 exParamIdentifier changedParamIdentifier;
 csSDK_int32 rebuildAllParams;
} exParamChangedRec;

exporterPluginID The host’s internal identifier for this exporter. Do not modify.
privateData Data allocated and managed by the exporter.
fileType The file format four character code set by the exporter during

exSelStartup.
exportAudio If non-zero, the current settings are set to export audio.
exportVideo If non-zero, the current settings are set to export video.
multiGroupIndex Discloses the index of the multi-group, containing the param-

eter changed by the user.
changedParamIdentifier Discloses the parameter ID of the parameter changed by the

user. May be empty if the changed item was exportAudio,
exportVideo or the current multiGroupIndex.

rebuildAllParams Set this to non-zero to tell the host to refresh ALL parameters
using the latest provided information. This can solve various
problems when dynamically updating parameter visibility,
valid ranges, etc.

exParamSummaryRec

Selector: exSelGetParamSummary

Provides access to the privateData for the indicated filetype, and provides buffers for the
exporter to fill in with a localized summary of the parameters.

typedef struct {
 csSDK_uint32 exporterPluginID;
 void* privateData;
 csSDK_int32 exportAudio;
 csSDK_int32 exportVideo;
 prUTF16Char videoSummary[256];
 prUTF16Char audioSummary[256];
 prUTF16Char bitrateSummary[256];

Exporters • 219Adobe Premiere Pro SDK Guide

} exParamSummaryRec;

exporterPluginID The host’s internal identifier for this exporter. Do not modify.
privateData Data allocated and managed by the exporter.
exportAudio If non-zero, the current settings are set to export audio.
exportVideo If non-zero, the current settings are set to export video.
videoSummary Fill these in with a line of a localized summary of the param-

eters.audioSummary
bitrateSummary

exPostProcessParamsRec

Selector: exSelPostProcessParams

Provides access to the privateData for the indicated filetype.

typedef struct {
 csSDK_uint32 exporterPluginID;
 void* privateData;
 csSDK_uint32 fileType;
 csSDK_int32 exportAudio;
 csSDK_int32 exportVideo;
 csSDK_int32 doConformToMatchParams;
} exPostProcessParamsRec;

exporterPluginID The host’s internal identifier for this exporter. Do not modify.
privateData Data allocated and managed by the exporter.
fileType The file format four character code set by the exporter during

exSelStartup.
exportAudio If non-zero, the current settings are set to export audio.
exportVideo If non-zero, the current settings are set to export video.
doConformToMatch­
Params

New in CC.

exQueryExportFileExtensionRec

Selector: exSelQueryExportFileExtension

Provides access to the privateData for the indicated filetype, and provides a buffer for the
exporter to fill in with the file extension.

typedef struct {

Exporters • 220Adobe Premiere Pro SDK Guide

 csSDK_uint32 exporterPluginID;
 void* privateData;
 csSDK_uint32 fileType;
 prUTF16Char outFileExtension[256];
} exQueryExportFileExtensionRec;

exporterPluginID The host’s internal identifier for this exporter. Do not modify.
privateData Data allocated and managed by the exporter.
fileType The file format four character code set by the exporter during

exSelStartup.
outFileExtension Provide the file extension here, given the current parameter

settings.

exQueryOutputFileListRec

Selector: exSelQueryOutputFileList

Provides access to the privateData for the indicated filetype, and provides a pointer to a
array of exOutputFileRecs for the exporter to fill in with the file paths.

typedef struct {
 csSDK_uint32 exporterPluginID;
 void* privateData;
 csSDK_uint32 fileType;
 csSDK_uint32 numOutputFiles;
 PrSDKString path;
 exOutputFileRec *outputFileRecs;
} exQueryOutputFileListRec;

exporterPluginID The host’s internal identifier for this exporter. Do not modify.
privateData Data allocated and managed by the exporter.
fileType The file format four character code set by the exporter during

exSelStartup.
numOutputFiles On the first call to exSelQueryOutputFileList, provide the

number of file paths here.
path New in CS5. Contains the primary intended destination path

provided by the host.

Exporters • 221Adobe Premiere Pro SDK Guide

outputFileRecs An array of exOutputFileRecs. On the second call to
exSelQueryOutputFileList, the path length (including trailing
null) for each path. On the third call, fill in the path of each
exOutputFileRec.

typedef struct
{
 int pathLength;
 prUTF16Char* path;
} exOutputFileRec;

exQueryOutputSettingsRec

Selector: exSelQueryOutputSettings

Provides access to the privateData for the indicated filetype, and provides a set of mem-
bers for the exporter to fill in with the current export settings.

typedef struct {
 csSDK_uint32 exporterPluginID;
 void* privateData;
 csSDK_uint32 fileType;
 csSDK_int32 inMultiGroupIndex;
 csSDK_int32 inExportVideo;
 csSDK_int32 inExportAudio;
 csSDK_int32 outVideoWidth;
 csSDK_int32 outVideoHeight;
 PrTime outVideoFrameRate;
 csSDK_int32 outVideoAspectNum;
 csSDK_int32 outVideoAspectDen;
 csSDK_int32 outVideoFieldType;
 double outAudioSampleRate;
 PrAudioSampleType outAudioSampleType;
 PrAudioChannelType outAudioChannelType;
 csSDK_uint32 outBitratePerSecond;
 csSDK_int32 outUseMaximumRenderPrecision;
} exQueryOutputSettingsRec;

exporterPluginID The host’s internal identifier for this exporter. Do not modify.
privateData Data allocated and managed by the exporter.
fileType The file format four character code set by the exporter during

exSelStartup.

Exporters • 222Adobe Premiere Pro SDK Guide

inMultiGroupIndex Return the parameter settings of the multi-group with this
index.

inExportVideo If non-zero, the current settings are set to export video.
inExportAudio If non-zero, the current settings are set to export audio.
outVideoWidth
outVideoHeight
...

Return each parameter setting, by getting the current value of
the parameter using the Export Param Suite. Some settings,
such as outVideoFieldType, may be implicit, for exam-
ple if the format only supports progressive frames.

outUseMaximumRender­
Precision

New in CS6. If non-zero, renders will always be made at
maximum bit-depth.

exQueryStillSequenceRec

Selector: exSelQueryStillSequence

Provides access to the privateData for the indicated filetype, and provides a set of mem-
bers for the exporter to provide information on how it would export the sequence of stills.

typedef struct {
 csSDK_uint32 exporterPluginID;
 void* privateData;
 csSDK_uint32 fileType;
 csSDK_int32 exportAsStillSequence;
 PrTime exportFrameRate;
} exQueryStillSequenceRec;

exporterPluginID The host’s internal identifier for this exporter. Do not modify.
privateData Data allocated and managed by the exporter.
fileType The file format four character code set by the exporter during

exSelStartup.
exportAsStillSequence Set this to non-zero to tell the host that the exporter can ex-

port the stills as a sequence.
exportFrameRate Set this to the frame rate of the still sequence.

exValidateOutputSettingsRec

Selector: exSelValidateOutputSettings

Provides access to the privateData for the indicated filetype, so that the exporter can vali-
date the current parameter settings.

typedef struct {

Exporters • 223Adobe Premiere Pro SDK Guide

 csSDK_uint32 exporterPluginID;
 void* privateData;
 csSDK_uint32 fileType;
} exExporterInstanceRec;

exporterPluginID The host’s internal identifier for this exporter. Do not modify.
privateData Data allocated and managed by the exporter.
fileType The file format four character code set by the exporter during

exSelStartup.

Suites

For information on how to acquire and manage suites, see the SweetPea Suites section.

Export File Suite

A cross-platform suite for writing to files on disk. Also provides a call to get the file path,
given the file object. Version 2 resolves a mismatch in seek modes in version 1, where fi­
leSeekMode_End was handled as fileSeekMode_Current and visa versa. See
PrSDKExportFileSuite.h.

Export Info Suite

GetExportSourceInfo

Get information on the source currently being exported.

prSuiteError (*GetExportSourceInfo)(
csSDK_uint32 inExporterPluginID,
PrExportSourceInfoSelector inSelector,
PrParam *outSourceInfo);

Value Type Description
kExportInfo_VideoWidth Int32 Width of source video
kExportInfo_VideoHeight Int32 Height of source video
kExportInfo_VideoFrameRate PrTime Frame rate
kExportInfo_VideoFieldType Int32 One of the prFieldType values
kExportInfo_VideoDuration Int64 A PrTime value

Exporters • 224Adobe Premiere Pro SDK Guide

kExportInfo_
PixelAspectNumerator

Int32 Pixel aspect ratio (PAR) numerator

kExportInfo_
PixelAspectDenominator

Int32 Pixel aspect ratio denominator

kExportInfo_AudioDuration Int64 A PrTime value
kExportInfo_
AudioChannelsType

Int32 One of the PrAudioChannelType
values. Returns 0 (which is unde-
fined) if there’s no audio.

kExportInfo_AudioSampleRate Float64
kExportInfo_SourceHasAudio Bool Non-zero if source has audio
kExportInfo_SourceHasVideo Bool Non-zero if source has video
kExportInfo_RenderAsPreview Bool Returns a non-zero value if cur-

rently rendering preview files.
kExportInfo_SequenceGUID Guid A PrPluginID, which is a

unique GUID for the sequence.
kExportInfo_SessionFilePath PrMemoryPtr A prUTF16Char array. The

exporter should release the pointer
using the Memory Manager suite.

kExportInfo_
VideoPosterFrameTickTime

Int64 New in CS5. A PrTime value.

kExportInfo_SourceTimecode PrMemoryPtr New in CS5.0.2. The timecode of
the source clip or sequence. The
sequence timecode is set by the
Start Time of a sequence using the
sequence wing-menu. A pointer
to a ExporterTimecodeRec
structure. The exporter should re-
lease the pointer using the Memory
Manager Suite.

kExportInfo_UsePreviewFiles Bool New in CC. Use this to check
if the user has checked “Use
Previews” in the Export Settings
dialog. If so, if possible, reuse any
preview files already rendered,
which can be retrieved using
AcquireVideoSegments
WithPreviewsID in the Video
Segment Suite.

Exporters • 225Adobe Premiere Pro SDK Guide

kExportInfo_
NumAudioChannels

Int32 New in CC. Get the number of au-
dio channels in a given source. This
can be used to automatically initial-
ize the audio channel parameter in
the Audio tab of the Export Settings
to match the source.

typedef struct
{
 csSDK_int64 mTimecodeTicks;
 csSDK_int64 mTicksPerFrame;
 bool mTimecodeStartPrefersDropFrame;
} ExporterTimecodeRec;

Export Param Suite

Specify all parameters for your exporter UI. See PrSDKExportParamSuite.h. Also, see the SDK
Export sample for a demonstration of how to use this suite.

To provide either a set of radio buttons or a drop-down list of choices, use
AddConstrainedValuePair(). Adding two choices will result in a pair of radio buttons
side-by-side. Three or more choices will be displayed as a drop-down box. Adding only one
value will result in a hard-coded string.

In CS5, and later fixed in 5.0.2, there is an issue where width and height ranges aren’t correctly set.
You may notice this when adjusting the width and height in the Export Settings UI. By unclick-
ing the chain that constrains width and height ratio, you will be able to modify the width and
height. As a side-effect of this bug, if the exporter is used to render preview files in an Editing
Mode, the user will be able to choose any preview frame size between 24x24 and 10240x8192.

CS6 adds SetParamDescription(), to set tooltip strings for parameters.

CC adds MoveParam(), to move an existing parameter to a new location. This can be used for
both standard parameters and group parameters.

Export Progress Suite

For pull-model exporters. Report progress during the export. Also, handle the case where the
user pauses or cancels an export. See PrSDKExportProgressSuite.h.

Exporters • 226Adobe Premiere Pro SDK Guide

Export Standard Param Suite

New in CS6. A suite for registering one of several common parameter sets, reducing parameter
management code on the plug-in side.

AddStandardParams

Register a set of standard parameters to be used by the exporter. Call during exSelGenerat­
eDefaultParams.

prSuiteError (*AddStandardParams)(
csSDK_uint32 inExporterID,
PrSDKStdParamType inSDKStdParamType);

Parameter Description
inExporterID Pass in exporterPluginID from exDoExportRec.
inSDKStdParamType Use one of the following:

enum PrSDKStdParamType
{
 SDKStdParams_Video,
 SDKStdParams_Audio,
 SDKStdParams_Still,
 SDKStdParams_VideoBitrateGroup,
 SDKStdParams_Video_NoRenderMax,
 SDKStdParams_Video_AddRenderMax,
 SDKStdParams_AudioTabOnly,
 SDKStdParams_AudioBitrateGroup,
 SDKStdParams_VideoWithSizePopup
};

PostProcessParamNames

Call during exSelPostProcessParams.

prSuiteError (*PostProcessParamNames)(
csSDK_uint32 inExporterID,
PrAudioChannelType inSourceAudioChannelType);

Parameter Description
inExporterID Pass in exporterPluginID from exDoExportRec.

Exporters • 227Adobe Premiere Pro SDK Guide

inSourceAudio-
ChannelType

Pass in the source audio channel type, which can be queried
from GetExportSourceInfo in the Export Info Suite.

QueryOutputSettings

Call during exSelQueryOutputSettings.

prSuiteError (*QueryOutputSettings)(
csSDK_uint32 inExporterID,
exQueryOutputSettingsRec* outOutputSettings);

Parameter Description
inExporterID Pass in exporterPluginID from exDoExportRec.
outOutputSettings This structure will be filled out based on the standard param-

eter settings.

MakeParamSummary

Call during exSelGetParamSummary.

prSuiteError (*MakeParamSummary)(
csSDK_uint32 inExporterID,
csSDK_int32 inDoVideo,
csSDK_int32 inDoAudio,
prUTF16Char* outVideoDescription,
prUTF16Char* outAudioDescription);

Parameter Description
inExporterID Pass in exporterPluginID from exDoExportRec.
inDoVideo Pass in exParamSummaryRec.exportVideo / expor­

tAudio so that the summary will be set based on whether
video / audio are being exported.

inDoAudio

outVideoDescription These will be filled out based on the standard parameter set-
tings.outAudioDescription

Exporter Utility Suite

New in CS6. Provides functions for push-model exporters, and also provides a way to register an
export event (error, warning, or info) to be displayed by the host and written to the log.

Exporters • 228Adobe Premiere Pro SDK Guide

DoMultiPassExportLoop

Register the callback to be made to push video frames to the exporter. This function assumes that
your exporter supports exSelQueryOutputSettings, which will be called.

prSuiteError (*DoMultiPassExportLoop)(
csSDK_uint32 inExporterID,
const ExportLoopRenderParams * inRenderParams,
csSDK_uint32 inNumberOfPasses,
PrSDKMultipassExportLoopFrameCompletionFunction

 inCompletionFunction,
void * inCompletionParam);

Parameter Description
inExporterID Pass in exporterPluginID from exDoExportRec.
inRenderParams Pass in the parameters that will be used for the render loop

that will push rendered frames via the provided callback in­
CompletionFunction.

inReservedProgressPreRender and inReserved­
ProgressPostRender should be set to the amount of
progress to be shown in any progress bar before starting the
render loop, and how much is remaining after finishing the
render loop. These values default to zero.

typedef struct
{
 csSDK_int32 inRenderParamsSize;
 csSDK_int32
 inRenderParamsVersion;
 PrPixelFormat inFinalPixelFormat;
 PrTime inStartTime;
 PrTime inEndTime;
 float
 inReservedProgressPreRender;
 float
 inReservedProgressPostRender;
} ExportLoopRenderParams;

inNumberOfPasses Set to 1, unless you need multipass encoding such as two-pass
or three-pass encoding.

Exporters • 229Adobe Premiere Pro SDK Guide

inCompletionFunction Provide your own callback here, which will be called when
the host pushes rendered frames. Use the following function
signature:

typedef prSuiteError
 (*PrSDKMultipassExportLoop
 FrameCompletionFunction)(
 csSDK_uint32 inWhichPass,
 csSDK_uint32 inFrameNumber,
 csSDK_uint32 inFrameRepeatCount,
 PPixHand inRenderedFrame,
 void* inCallbackData);

Currently, there is no simple way to ensure that pushed frames
survive longer than the life of the function call. If you are
interested in this capability, please contact us and explain your
need.

inCompletionParam Pass in a void * to the data you wish to send to your in­
CompletionFunction above in inCallbackData.

ReportIntermediateProgressFor RepeatedVideoFrame

Register the callback to be made to push video frames to the exporter. This function assumes that
your exporter supports exSelQueryOutputSettings, which will be called.

prSuiteError (*ReportIntermediateProgressForRepeatedVideoFrame)(
csSDK_uint32 inExporterID,
csSDK_uint32 inRepetitionsProcessedSinceLastUpdate);

Parameter Description
inExporterID Pass in exporterPluginID from exDo­

ExportRec.
inRepetitions Processed-
SinceLastUpdate

Pass in the number of repeated frames pro-
cessed since the last call was made, if any.

ReportEvent

Report an event to the host, for a specific encode in progress in the Adobe Media Encoder render
queue or Premiere Pro. These events are displayed in the application UI, and are also added to the
AME encoding log.

prSuiteError (*ReportEvent)(

Exporters • 230Adobe Premiere Pro SDK Guide

csSDK_uint32 inExporterID,
csSDK_uint32 inEventType,
const prUTF16Char* inEventTitle,
const prUTF16Char* inEventDescription);

Parameter Description
inExporterID Pass in exporterPluginID from exDoExportRec.
inEventType Use one of the types from the Error Suite:

kEventTypeInformational, kEventTypeWarning, or
kEventTypeError

inEventTitle Provide information about the event for the user.
inEventDescription

Palette Suite

A seldom-used suite for palettizing an image, for example, for GIFs. See PrSDKPaletteSuite.h.

Sequence Audio Suite

Get audio from the host.

MakeAudioRenderer

Create an audio renderer, in preparation to get rendered audio from the host.

prSuiteError (*MakeAudioRenderer)(
 csSDK_uint32 inPluginID,
 PrTime inStartTime,
 PrAudioChannelType inChannelType,
 PrAudioSampleType inSampleType,
 float inSampleRate,
 csSDK_uint32* outAudioRenderID);

Parameter Description
inPluginID Pass in exporterPluginID from exDo­

ExportRec.
inStartTime Start time for the audio requests.
inChannelType PrAudioChannelType enum value for the

channel type needed.

Exporters • 231Adobe Premiere Pro SDK Guide

inSampleType This should always be
kPrAudioSampleType_32BitFloat.
Other types are unsupported.

inSampleRate Samples per second.
outAudioRenderID This ID passed back is needed for subsequent

calls to this suite.

ReleaseAudioRenderer

Release the audio renderer when the exporter is done requesting audio.

prSuiteError (*ReleaseAudioRenderer)(
 csSDK_uint32 inPluginID,
 csSDK_uint32 inAudioRenderID);

Parameter Description
inPluginID Pass in exporterPluginID from exDo­

ExportRec.
inAudioRenderID The call will release the audio renderer with

this ID.

GetAudio

Returns from the host the next contiguous requested number of audio sample frames, specified in
inFrameCount, in inBuffer as arrays of uninterleaved floating point values. Returns sui­
teError_NoError if no error. The plug-in must manage the memory allocation of inBuf­
fer, which must point to n buffers of floating point values of length inFrameCount, where n
is the number of channels. When inClipAudio is non-zero, this parameter makes GetAudio
clip the audio samples at +/- 1.0.

prSuiteError (*GetAudio)(
 csSDK_uint32 inAudioRenderID,

csSDK_uint32 inFrameCount,
float** inBuffer,
char inClipAudio);

Parameter Description
inAudioRenderID Pass in the outAudioRenderID returned

from MakeAudioRenderer(). This gives
the host the context of the audio render.

Exporters • 232Adobe Premiere Pro SDK Guide

inFrameCount The number of audio frames to return
in inBuffer. The next contiguous au-
dio frames will always be returned, unless
ResetAudioToBeginning has just been
called.

inBuffer An array of float arrays, allocated by the
exporter. The host returns the samples for each
audio channel in a separate array.

inClipAudio When true, GetAudio will return audio
clipped at +/- 1.0. Otherwise, it will return
unclipped audio.

ResetAudioToBeginning

This call will reset the position on the audio generation to time zero. This can be used for multi-
pass encoding.

prSuiteError (*ResetAudioToBeginning)(
csSDK_uint32 inAudioRenderID);

GetMaxBlip

Returns the maximum number of audio sample frames that can be requested from one call to
GetAudio in maxBlipSize.

prSuiteError (*GetMaxBlip)(
csSDK_uint32 inAudioRenderID,
PrTime inTicksPerFrame,
csSDK_uint32* maxBlipSize);

Sequence Render Suite

Get rendered video from one of the renderers available to the host. This may use one of the
host’s built-in renderers, or a plug-in renderer, if available For best performance, use the asyn-
chronous render requests with the source media prefetching calls, although synchronous render-
ing is available too.

Version 4, new in CS5.5, adds RenderVideoFrameAndConformToPixelFormat().

Exporters • 233Adobe Premiere Pro SDK Guide

MakeVideoRenderer()

Create a video renderer, in preparation to get rendered video.

prSuiteError (*MakeVideoRenderer)(
 csSDK_uint32 pluginID,
 csSDK_uint32* outVideoRenderID
 PrTime inFrameRate);

Parameter Description
pluginID Pass in exporterPluginID from exDo­

ExportRec.
outVideoRenderID This ID passed back is needed for subsequent

calls to this suite.
inFrameRate Frame rate, in ticks.

ReleaseVideoRenderer()

Release the video renderer when the exporter is done requesting video.

prSuiteError (*ReleaseVideoRenderer)(
 csSDK_uint32 pluginID,
 csSDK_uint32 inVideoRenderID);

Parameter Description
pluginID Pass in exporterPluginID from exDo­

ExportRec.
inVideoRenderID The call will release the video renderer with

this ID.

struct SequenceRender_ParamsRec

Fill this structure in before calling RenderVideoFrame(),
QueueAsyncVideoFrameRender(), or
PrefetchMediaWithRenderParameters(). Note that if the frame aspect ratio of the
request does not match that of the sequence, the frame will be letterboxed or pillarboxed, rather
than stretched to fit the frame.

typedef struct
{

Exporters • 234Adobe Premiere Pro SDK Guide

 const PrPixelFormat* inRequestedPixelFormatArray;
 csSDK_int32 inRequestedPixelFormatArrayCount;
 csSDK_int32 inWidth;
 csSDK_int32 inHeight;
 csSDK_int32 inPixelAspectRatioNumerator;
 csSDK_int32 inPixelAspectRatioDenominator;
 PrRenderQuality inRenderQuality;
 prFieldType inFieldType;
 csSDK_int32 inDeinterlace;
 PrRenderQuality inDeinterlaceQuality;
 csSDK_int32 inCompositeOnBlack;
} SequenceRender_ParamsRec;

Member Description
inRequestedPixelFormatArray An array of PrPixelFormats that list your format

preferences in order.
inRequestedPixelFormatArray­
Count

Size of the pixel format array.

inWidth Width to render at.
inHeight Height to render at.
inPixelAspectRatioNumerator Numerator of the pixel aspect ratio.
inPixelAspectRatioDenominator Denominator of the pixel aspect ratio.
inRenderQuality Use one of the PrRenderQuality enumerated

values.
inFieldType Use one of the prFieldType constants.
inDeinterlace Set to non-zero, to force an explicit deinterlace.

Otherwise, the renderer will use the output field
setting to determine whether to automatically
deinterlace any interlaced sources.

inDeinterlaceQuality Use one of the PrRenderQuality enumerated
values.

inCompositeOnBlack Set to non-zero, to composite the render on black.

struct SequenceRender_GetFrameReturnRec

Returned from RenderVideoFrame() and passed by
PrSDKSequenceAsyncRenderCompletionProc().

typedef struct
{
 void* asyncCompletionData;
 csSDK_int32 returnVal;

Exporters • 235Adobe Premiere Pro SDK Guide

 csSDK_int32 repeatCount;
 csSDK_int32 onMarker;
 PPixHand outFrame;
} SequenceRender_GetFrameReturnRec;

Member Description
asyncCompletionData Passed to

PrSDKSequenceAsyncRenderCompletionProc()
from QueueAsyncVideoFrameRender(). Not used by
RenderVideoFrame().

returnVal ErrNone , Abort, Done, or an error code.
repeatCount The number of repeated frames from this frame forward. In

the output file, this could be writing NULL frames, changing
the current frame’s duration, or whatever is appropriate ac-
cording to the codec.

onMarker If non-zero, there is a marker on this frame.
outFrame Returned from RenderVideoFrame(). Not returned from

PrSDKSequenceAsyncRenderCompletionProc()

RenderVideoFrame()

The basic, synchronous call to get a rendered frame from the host. Returns suiteError_
NoError if you can continue exporting, exportReturn_Abort if the user aborted the
export, exportReturn_Done if the export has finished, or an error code.

prSuiteError (*RenderVideoFrame)(
 csSDK_uint32 inVideoRenderID,
 PrTime inTime,
 SequenceRender_ParamsRec* inRenderParams,
 PrRenderCacheType inCacheFlags,
 SequenceRender_GetFrameReturnRec* getFrameReturn);

Parameter Description
inVideoRenderID Pass in the outVideoRenderID returned

from MakeVideoRenderer(). This gives
the host the context of the video render.

inTime The frame time requested.
inRenderParams The details of the render.
inCacheFlags One or more cache flags.

Exporters • 236Adobe Premiere Pro SDK Guide

getFrameReturn Passes back a structure that contains info about
the frame returned, and the rendered frame
itself.

GetFrameInfo()

Gets information about a given frame. Currently, SequenceRender_FrameInfoRec only
contains repeatCount, which is the number of repeated frames from this frame forward.

prSuiteError (*GetFrameInfo)(
 csSDK_uint32 inVideoRenderID,
 PrTime inTime,
 SequenceRender_FrameInfoRec* outFrameInfo);

SetAsyncRenderCompletionProc()

Register a notification callback for getting asynchronously rendered frames when the ren-
der completes. asyncGetFrameCallback should have the signature described in
PrSDKSequenceAsyncRenderCompletionProc below.

prSuiteError (*SetAsyncRenderCompletionProc)(
 csSDK_uint32 inVideoRenderID,
 PrSDKSequenceAsyncRenderCompletionProc asyncGetFrameCallback,
 long callbackRef);

Parameter Description
inVideoRenderID Pass in the outVideoRenderID returned from

MakeVideoRenderer(). This will be passed to
PrSDKSequenceAsyncRenderCompletionProc.

asyncGetFrameCallback The notification callback.
inCallbackRef A pointer holding data private to the export-

er. This could be, for example, a pointer to an
exporter instance. This will also be passed to
PrSDKSequenceAsyncRenderCompletionProc.

PrSDKSequence AsyncRenderCompletionProc()

Use this function signature for your callback used for async frame notification, passed to
SetAsyncRenderCompletionProc. Error status (error or abort) is returned in inGet­
FrameReturn.

Exporters • 237Adobe Premiere Pro SDK Guide

void (*PrSDKSequenceAsyncRenderCompletionProc)(
csSDK_uint32 inVideoRenderID,
void* inCallbackRef,
PrTime inTime,
PPixHand inRenderedFrame,
SequenceRender_GetFrameReturnRec *inGetFrameReturn);

Parameter Description
inVideoRenderID The outVideoRenderID that the exporter passed to

SetAsyncRenderCompletionProc earlier.
inCallbackRef A pointer that the exporter sets using

SetAsyncRenderCompletionProc(). This could
be, for example, a pointer to an exporter instance.

inTime The frame time requested.
inRenderedFrame The rendered frame. The exporter is reponsible for dis-

posing of this PPixHand using the Dispose() call in the
PPix Suite.

inGetFrameReturn A structure that contains info about the frame returned,
and it includes the inAsyncCompletionData origi-
nally passed to QueueAsyncVideoFrameRender().

QueueAsyncVideoFrameRender()

Use this call rather than RenderVideoFrame() to queue up a request to render a specific
frame asynchronously. The rendering can happen on a separate thread or processor. When the
render is completed, the PrSDKSequenceAsyncRenderCompletionProc that was set
using SetAsyncRenderCompletionProc will be called.

prSuiteError (*QueueAsyncVideoFrameRender)(
 csSDK_uint32 inVideoRenderID,
 PrTime inTime,
 csSDK_uint32* outRequestID,
 SequenceRender_ParamsRec* inRenderParams,
 PrRenderCacheType inCacheFlags,
 void* inAsyncCompletionData);

Parameter Description
inVideoRenderID Pass in the outVideoRenderID returned from

MakeVideoRenderer(). This gives the host the con-
text of the video render.

inTime The frame time requested.

Exporters • 238Adobe Premiere Pro SDK Guide

outRequestID Passes back a request ID, which... doesn’t seem to have any
use.

inRenderParams The details of the render.
inCacheFlags One or more cache flags.
inAsyncCompletionData This data will be passed to the

PrSDKSequenceAsyncRenderCompletionProc
in inGetFrameReturn.asyncCompletionData.

PrefetchMedia()

Prefetch the media needed to render this frame. This is a hint to the importers to begin reading
media needed to render this video frame.

prSuiteError (*PrefetchMedia)(
 csSDK_uint32 inVideoRenderID,
 PrTime inFrame);

PrefetchMediaWithRenderParameters()

Prefetch the media needed to render this frame, using all of the parameters used to render the
frame. This is a hint to the importers to begin reading media needed to render this video frame.

prSuiteError (*PrefetchMediaWithRenderParameters)(
 csSDK_uint32 inVideoRenderID,
 PrTime inTime,
 SequenceRender_ParamsRec* inRenderParams);

CancelAllOutstandingMediaPrefetches()

Cancel all media prefetches that are still outstanding.

prSuiteError (*PrefetchMedia)(
 csSDK_uint32 inVideoRenderID);

IsPrefetchedMediaReady()

Check on the status of a prefetch request.

prSuiteError (*IsPrefetchedMediaReady)(
 csSDK_uint32 inVideoRenderID,
 PrTime inTime,

Exporters • 239Adobe Premiere Pro SDK Guide

 prBool* outMediaReady);

MakeVideoRendererForTimeline()

Similar to MakeVideoRenderer, but for use by renderer plug-ins. Creates a video renderer,
in preparation to get rendered video from the host. The TimelineID in question must refer to a
top-level sequence.

prSuiteError (*MakeVideoRendererForTimeline)(
 PrTimelineID inTimeline,
 csSDK_uint32* outVideoRendererID);

MakeVideoRendererForTimeline WithFrameRate()

Similar to MakeVideoRendererForTimeline, with an additional frame rate parameter.
This is useful for the case of a nested multicam sequence.

prSuiteError (*MakeVideoRendererForTimelineWithFrameRate)(
 PrTimelineID inTimeline,
 PrTime inFrameRate,
 csSDK_uint32* outVideoRendererID);

ReleaseVideoRendererForTimeline()

Similar to ReleaseVideoRenderer, but for use by renderer plug-ins. Release the video ren-
derer when the renderer plug-in is done requesting video.

prSuiteError (*ReleaseVideoRendererForTimeline)(
 csSDK_uint32 inVideoRendererID);

RenderVideoFrameAnd ConformToPixelFormat()

New in CS5.5. Similar to RenderVideoFrame., but conforms the resulting frame to a specific
pixel format. Allows an exporter to request a frame in a specific pixel format.

prSuiteError (*RenderVideoFrameAndConformToPixelFormat)(
 csSDK_uint32 inVideoRenderID,
 PrTime inTime,
 SequenceRender_ParamsRec* inRenderParams,
 PrRenderCacheType inCacheFlags,
 PrPixelFormat inConformToFormat,
 SequenceRender_GetFrameReturnRec* getFrameReturn);

Exporters • 240Adobe Premiere Pro SDK Guide

MakeVideoRendererForTimeline WithStreamLabel()

New in CS6. Similar to MakeVideoRenderer, but is stream label-aware. Allows an exporter to
request rendered frames from multiple video streams.

prSuiteError (*MakeVideoRendererForTimelineWithStreamLabel)(
 PrTimelineID inTimeline,
 PrSDKStreamLabel inStreamLabel,
 csSDK_uint32* outVideoRendererID);

Additional Details

Multiplexer Tab Ordering

If your exporter provides a Multiplexer tab like some of the built-in exporters do, you may find
that it appears after the Video and Audio tab, rather than before those tabs as in the case of our
exporters. The key is to use the following define as the parameter identifer for the multiplexer tab
group:
#define ADBEMultiplexerTabGroup “ADBEAudienceTabGroup”

Creating a Non-Editable String in the Parameter UI

During exSelGenerateDefaultParams, add a parameter with exNewParamIn­
fo.flags = exParamFlag_none. Then during exSelPostProcessParams, call
AddConstrainedValuePair() in the Export Param Suite. If you only add one value pair,
then the parameter will be a non-editable string. In the case of the SDK Exporter sample, it adds
two, which appear as a pair of radio buttons side-by-side.

Guidelines for Exporters in Encore

Starting in CS5, third-party exporters can now be used to transcode assets to MPEG-2 or Blu-ray
compliant files. Currently, the option to choose a third-party exporter is only available on a per-
clip basis, not on a project-wide basis. The user will need to right-click on an asset in the Project
panel, choose Transcode Settings, and choose the third-party preset from the Quality Preset
drop-down.

Prior to CS6, Encore was a 32-bit application. So if you are developing plug-ins for Encore
CS5, use the CS5 headers to create 32-bit plug-ins. We have left the 32-bit configurations in the
sample projects to facilitate this. Install the exporter in the Encore application folder at Plug-ins/
Common/. Note that on Mac OS, this subfolder is in within the application package.

Exporters • 241Adobe Premiere Pro SDK Guide

Naming Your Exporter

Encore only uses the MPEG2-DVD and MPEG2 Blu-ray formats for transcoding to MPEG2-
DVD and MPEG2 Blu-ray formats, respectively. Currently it looks for the substrings “MPEG2-
DVD”, “MPEG2 Blu-ray” and “H.264 Blu-ray” in the exporter name to identify the video format
of the exporter, and to enable it within the Encore UI. So the format name returned from export-
er plug-in should contain one of these as a substring, in order for it to be usable within Encore.
For example “My MPEG2 Blu-ray”, “Accelerated MPEG2-DVD”, etc. Please avoid using the exact
same names as the built-in formats to avoid conflict.

Naming Your Output

Encore uses the exporters to create elementary video and audio streams (muxing is switched to
off during transcoding). The output file extensions should be standard ones: .m2v for MPEG2-
DVD, MPEG2 Blu-ray video formats, .m4v for H.264 Blu-ray; .ac3 for Dolby audio, .wav for
PCM, .mpa for MPEG-1 Layer 2.

Parameters

Please refer to the built-in MPEG2-DVD and MPEG2 Blu-ray formats present in Encore to get
familiar with the typical exporter user interface in Encore. Having UI properties similar to the
built-in formats in Encore will make it easier to integrate a third-party exporter.

The audio formats available in an exporter should correspond to the same choices as available in
Encore for a DVD or Blu-ray project. In an MPEG-2 DVD exporter, the audio formats should be
either Dolby Digital 2.0 (stereo), MPEG-1 Layer 2 audio in stereo or PCM audio (48kHz). For
an MPEG2 Blu-ray exporter, only the Dolby and the PCM formats should be available. For more
details regarding audio formats supported in Encore, please refer to the Encore help documenta-
tion. Allowing audio formats other than these for encoding will not work in Encore due to the
constraints of the DVD/Blu-ray disc specifications.

Encore will need to access many of the exporter’s encoding parameters. It may even modify some
of the encoding parameters during the transcoding to MPEG-2 DVD and Blu-ray formats, so that
the encoding stays within the bit-budget constraints of the project. So a third-party exporter must
use specific property identifiers and property types. If these parameters are not used, then there
is little guarantee of the correctness of the encoded file and the size of the final disc, since Encore
will not be able to control the settings of the exporter to apply the size constraints to the output
files. Below is a list of the properties with their identifiers and types that an exporter plugin must
support:

Property Identifier Property type Description

Exporters • 242Adobe Premiere Pro SDK Guide

ADBEVideoWidth
(required)

exParamType_int Frame width

ADBEVideoHeight
(required)

exParamType_int Frame height

ADBEVideoVBR exParamType_int
Constrained value list

Type of encoding (constant/variable
bitrate, 1 / 2 passes)
0 = CBR
1 = VBR, 1 Pass
2 = VBR, 2 Pass

ADBEVideoBitRate
ADBEVideoMaxBitRate
ADBEVideoAvgBitRate
ADBEVideoMinBitRate

exParamType_float Video bitrate(s) (Mbps)
For CBR encoding use the first
parameter.
For VBR encoding use parameters
2-4.

ADBEVideoFPS (required) exParamType_
ticksFrameRate

Frame rate

ADBEMPEGCodec-
BroadcastStandard
(required)

exParamType_int
Constrained value list

0 = NTSC
1 = PAL
2 = SECAM

ADBEVideoAspect exParamType_int
Constrained value list

Frame aspect ratio
1 = Square 1:1
2 = Standard 4:3
3 = Widescreen16:9

ADBEVMCMux_Type exParamType_int
Constrained value list

Encore needs a way to switch off
muxing as it creates only elemen-
tary streams
0 = MPEG-1
1 = VCD
2 = MPEG-2
3 = SVCD
4 = DVD
5 = TS
6 = None

ADBEVideoFieldType exParamType_int
Constrained value list

0 = Progressive
1 = Upper field first
2 = Lower field first

ADBEAudioCodec
(required)

exParamType_int
Constrained value list

Use these 4CCs for values
‘dlby’ – Dolby
‘PCMA’ – PCM
‘mpa ‘ – MPEG-1 Layer 2

Exporters • 243Adobe Premiere Pro SDK Guide

ADBEAudio_Endianness
(optional)

exParamType_int
Constrained value list

If using Dolby audio; Encore will
set to big endian for AC3 files
0 = little endian
1 = big endian

ADBEAudioBitrate
(required for Dolby and
MPEG-2 audio codecs)

exParamType_int Audio codec bitrate (kbps)

Guidelines for Exporters in Premiere Elements

First, make sure you are building the exporter using the right SDK. Premiere Elements 8 requires
the Premiere Pro CS4 SDK. The next version of Premiere Elements will likely use the CS5 SDK.

Exporter Preset

For an exporter to show up in the Premiere Elements UI, you’ll need to create and install a preset
in a specific location:

1) Create a folder named “OTHERS” in [App installation folder]/sharingcen­
ter/Presets/pc/
2) Create a sub-folder with your name (e.g. MyCompany) under OTHERS and place the preset file
(.epr) in it.
The final path of the preset file should be something like [App installation folder]/
sharingcenter/Presets/pc/OTHERS/MyCompany/MyPreset.epr
3) Relaunch Premiere Elements.
 a. Add a clip to the timeline
 b. Goto the “Share” tab
 c. Under that choose “Personal Computer”
 d. You should see the “Others – 3rd Party Plug-ins” in the list of formats. Select this.
 e. Your preset should be seen in the drop-down.

Return Values

Premiere Elements 8 uses a slightly different definition of the return values. Use the following
definition instead:

enum
{
 exportReturn_ErrNone = 0,
 exportReturn_Abort,
 exportReturn_Done,
 exportReturn_InternalError,

Exporters • 244Adobe Premiere Pro SDK Guide

 exportReturn_OutputFormatAccept,
 exportReturn_OutputFormatDecline,
 exportReturn_OutOfDiskSpace,
 exportReturn_BufferFull,
 exportReturn_ErrOther,
 exportReturn_ErrMemory,
 exportReturn_ErrFileNotFound,
 exportReturn_ErrTooManyOpenFiles,
 exportReturn_ErrPermErr,
 exportReturn_ErrOpenErr,
 exportReturn_ErrInvalidDrive,
 exportReturn_ErrDupFile,
 exportReturn_ErrIo,
 exportReturn_ErrInUse,
 exportReturn_IterateExporter,
 exportReturn_IterateExporterDone,
 exportReturn_InternalErrorSilent,
 exportReturn_ErrCodecBadInput,
 exportReturn_ErrLastErrorSet,
 exportReturn_ErrLastWarningSet,
 exportReturn_ErrLastInfoSet,
 exportReturn_ErrExceedsMaxFormatDuration,
 exportReturn_VideoCodecNeedsActivation,
 exportReturn_AudioCodecNeedsActivation,
 exportReturn_IncompatibleAudioChannelType,
 exportReturn_Unsupported = -100
};

The red values are unique to Premiere Elements 8, and shifted the subsequent return values 2
values higher than their definition in the Premiere Pro SDK.

Transmitters • 245Adobe Premiere Pro SDK Guide

9Transmitters

Starting in CS6, the Transmit API is the preferred means for external hardware monitoring.
This new API provides support for pushing video, audio, and closed captions to external hard-
ware. Transmitters can be specified by the user in Preferences > Playback. Other plug-ins such
as importers and effects with settings preview dialogs can send video out to the active transmit-
ter, opening up new possibilities for hardware monitoring. Transmit plug-ins are supported in
Premiere Pro, After Effects (starting in CC 2014), SpeedGrade, Encore, and Prelude (note that
since Prelude CS6 Windows is a 32-bit application, it uses 32-bit transmitter plug-ins).

When a new transmitter instance is created, it is asked to describe the format(s) it wishes to re-
ceive the rendered video in. A transmitter plug-in can request different formats depending on the
source clip or timeline format. The host application will handle all the conversions to the desired
video format. As an example, a transmitter instance may specify that it can only handle a fixed
width and height, but any pixel format. Besides video conversions, the host handles scheduling
for prefetching the media and asynchronous rendering.

A transmitter may leave the audio to be played by the host, through the system’s sound drivers
(ASIO or CoreAudio). Or, if a transmitter wants to handle the audio itself to send it to the exter-
nal hardware, it can request audio using GetNextAudioBuffer in the Playmod Audio Suite.

On playback, the host provides the transmitter with a clock callback, which the transmitter must
call to update the host with the new time every frame. This allows the transmitter to orchestrate
the audio/video sync.

Transmitters can use the Captioning Suite to get any closed captions for the sequence.

Transmitters do not need to call the Playmod Device Controller suite to handle Export to Tape.
This is handled at the player level.

Transmitters • 246Adobe Premiere Pro SDK Guide

What’s New in Premiere Pro CS6.0.2?

A transmitter can now provide strings to label its audio channels, in tmAudioMode.outOut­
putAudioNames. These strings will be used for the Audio Output Mapping preferences, rather
than the default strings.

Transmitter Basics

Basic Organization

A transmitter module can define multiple plug-ins. Each plug-in can appear in the Playback
Preferences as an option for video playback and/or audio playback. Only one transmitter can be
used for audio, since the transmitter used for audio drives the clock. Multiple transmitters may
be selected for video simultaneously.

When active, multiple instances of a single plug-in can be created. An instance is created to dis-
play a clip or sequence. Hardware access is regulated through ActivateDeactivate. Only an
active instance should access the hardware.

Video Formats

Specify which video format(s) you wish to receive during QueryVideoMode. To simplify your
plug-in, be as specific as possible, and allow the host to perform the conversion asynchronously
ahead of time. Packed and compressed formats are also supported. If multiple formats are speci-
fied, the closest will be selected at render time. If your transmitter would benefit from on-GPU
frames, please let us know.

When sent QueryVideoMode, the transmitter is informed about the clip/sequence video at-
tributes by being passed a tmInstance pointer. So, for example, if the transmitter instance is
constructed to support a 1920x1080 timeline, it can report that same size back to the host applica-
tion, so that it will not have to handle any scaling. If, for example, it does handle scaling, and it is
constructed to handle a 1440x1080 timeline, it can report 1440x1080 and handle the scaling itself.
In this way you can choose a single fixed size depending on the timeline.

When video frames are pushed to the transmitter, properties like pixel format may change on
a segment-by-segment basis depending on the source footage. Other properties like size may
change based on the current fractional resolution, which may differ between scrubbing and
stopped.

Transmitters • 247Adobe Premiere Pro SDK Guide

Fractional Resolution

In the Premiere Pro Source and Program Monitors, the user can choose independent resolutions
for rendering during playback and paused modes. For example, it is common to have the play-
back resolution set to half, and paused resolution set to full.

If an output card has a hardware scaler, the transmit plug-in can declare support for frac-
tional resolutions. For example, for a 1920x1080 instance, it could declare support for not only
1920x1080, but also 960x540, 480x270, etc. This will allow the renderer to skip the step of rescal-
ing back up to full resolution after rendering at a fractional resolution. If however, the plug-in
only declares support for full resolution, the renderer will scale the video back up before pushing
it to the transmitter.

Audio Format

During QueryAudioMode, a transmitter will be told how many channels the instance has. The
transmitter should change that value based on what it can support and then make sure the buffers
it provides match that. Although Premiere Pro can support 32 channels of audio, transmitters can
only support up to 16 channels of audio.

As of CS6, sequences will currently always report audio available in CreateInstance, even
if empty. An example of somewhere that a transmitter will be called with no audio is for video
output from the RED settings dialog, which is video only.

A transmitter should call GetNextAudioBuffer only when inAudioActive is passed as
true to ActivateDeactivate.

Frame Rate

For framerate, video will be pushed to you at the rate of the timeline. This was chosen because of
the wide variety in conversion policies, including pulldown, frame duplication, etc.

Dropped Frames

If the host cannot keep up rendering, it will send duplicate frames with PushVideo. If you receive
a frame that cannot be sent out to hardware on time, notify the host using inDroppedFrame­
Callback in tmPlaybackClock. In Premiere Pro, the user can turn on the Dropped Frame
Indicator to see the total number of frames that were dropped either because the host couldn’t
keep up, or the hardware couldn’t keep up.

Transmitters • 248Adobe Premiere Pro SDK Guide

Sync Between Application UI and Hardware Output

Naturally there is some latency between the time the host sends frames to be displayed on the
output, and the time it can actually be displayed. Use tmVideoMode.outLatency to specify
the latency. For example, if a transmitter specifies 5 frames of latency, when the user starts play-
back, the host will send 5 frames of video to the transmitter before sending StartPlaybackClock.
This allows time for the transmitter to send frames to the hardware output in advance, so that the
hardware output will be in sync with the monitor in the host application UI.

When the user is scrubbing in the timeline, send the video frames as fast as possible to the out-
put. The host application UI will not wait for the hardware output to catch up, and currently as of
6.0.1 there may be a noticable latency. To reduce the scrubbing latency as much as possible, when
scrubbing or stopped the transmitter should cancel any frames it has pending to immediately
display the new one.

Dog Ears

Turn on dog ears to view statistics about the frames being sent to the transmitter. This is useful to
view information such as pixel formats and much more. Note that this mode may result it dupli-
cate PushVideo calls made for a single frame.

Closed Captioning

This captioning data is attached to a sequence by the user via menu items in the Sequence menu.
In the Program Monitor, the Closed Captioning Display options in the fly-out menu give the user
control over the display. The hardware should always transmit any Closed Captioning data, and
the user can go through the hardware monitor’s on-screen display menu to choose which caption
track to view. The closed captioning data is accessible using the new Captioning Suite. Use this
data for the hardware output.

Driving Transmitters from Other Plug-ins

Transmitters can be driven by many areas of the Premiere Pro interface. Currently, they are called
to show frames from the Program Monitor and Source Monitor. But other types of plug-ins can
use the Transmit Invocation Suite to push frames to transmitters. For example, an effect or titler
with a modal setup dialog could push frames to the output.

Entry Point

This entry point function will be called once on load, and once on unload.

Transmitters • 249Adobe Premiere Pro SDK Guide

tmResult (*tmEntryFunc)(
 csSDK_int32 inInterfaceVersion,
 prBool inLoadModule,
 piSuitesPtr piSuites,
 tmModule* outModule)

A tmModule is a structure of function pointers, which the transmitter implements.

tmModule Functions

Fill in 0 for any unsupported calls. Thread safety is defined per-module, only a single thread will
enter a module at a time.

Member Description
Startup tmResult (*Startup)(

 tmStdParms* ioStdParms,
 tmPluginInfo* outPluginInfo);

Initialize a transmitter, fill in basic plug-in info, allocate
memory to hold user settings and other data. tmResult_
ContinueIterate may be returned to support multiple
transmit plug-ins within the same module. ioPrivatePl­
uginData, ioSerializedPluginData & ioSerial­
izedPluginDataSize may be written from Startup.

Shutdown tmResult (*Shutdown)(
 tmStdParms* ioStdParms);

Terminate a transmitter. Dispose of ioPrivatePluginData
if previously allocated in Startup.

QueryAudioMode tmResult (*QueryAudioMode)(
 const tmStdParms* inStdParms,
 const tmInstance* inInstance,
 csSDK_int32 inQueryIterationIndex,
 tmAudioMode* outAudioMode);

Describe the audio modes supported by the transmitter, one at a
time. Note that currently one audio mode is currently supported.
You can convert between audio formats using the Audio Suite.

Transmitters • 250Adobe Premiere Pro SDK Guide

QueryVideoMode tmResult (*QueryVideoMode)(
 const tmStdParms* inStdParms,
 const tmInstance* inInstance,
 csSDK_int32 inQueryIterationIndex,
 tmVideoMode* outVideoMode);

Describe the video modes supported by the transmitter, one at
a time. The video sent later in PushVideo will be one of the
formats specified here.

SetupDialog tmResult (*SetupDialog)(
 tmStdParms* ioStdParms,
 prParentWnd inParent);

Display your own modal settings dialog. Will only be called if the
plugin returned outHasSetup. Save any settings to ioSeri­
alizedPluginData and if needed update ioSerialized­
PluginDataSize. NeedsReset will be invoked after this
call, to allow your transmitter a chance to reset all open plug-ins
and startup with the new settings.

NeedsReset tmResult (*NeedsReset)(
 const tmStdParms* inStdParms,
 prBool* outResetModule);

Will be called regularly on the first plug-in of a module to allow
rebuilding on state changes. If the passed in settings differ enough
from the created settings, or if the settings on the hardware itself
have changed, the transmitter should specify a reset is needed. If
outResetModule is set to true, all open plug-ins will be shut-
down and started up again.

CreateInstance tmResult (*CreateInstance)(
 const tmStdParms* inStdParms,
 tmInstance* ioInstance);

Creates an instance of a transmitter. inPlayID and inTime­
lineID may be 0 if not driven by a player. Multiple instances
may be created at the same time. Allocate ioPrivateIn­
stanceData.

DisposeInstance tmResult (*DisposeInstance)(
 const tmStdParms* inStdParms,
 tmInstance* ioInstance);

Dispose an instance of a transmitter. Any ioPrivateIn­
stanceData should be disposed.

Transmitters • 251Adobe Premiere Pro SDK Guide

ActivateDeactivate tmResult (*ActivateDeactivate)(
 const tmStdParms* inStdParms,
 const tmInstance* inInstance,
 PrActivationEvent inActivationEvent,
 prBool inAudioActive,
 prBool inVideoActive);

Activate or deactivate a transmitter instance, for example during
application suspend or switching between monitors. Transmitters
should manage hardware access with these calls, not Startup/
Shutdown, since it is valid for multiple plugins to be simultane-
ously active for the same device. Audio and video may be inde-
pendently activated.

StartPlaybackClock tmResult (*StartPlaybackClock)(
 const tmStdParms* inStdParms,
 const tmInstance* inInstance,
 const tmPlaybackClock* inClock);

Start a clock for playback. This will be sent not only when starting
playback, but also for scrubbing. Will only be called if the trans-
mitter returned outHasClock. The provided callback must
be called each time the time changes, for example once for each
frame in response to PushVideo. Start may be called multiple
times without a stop in between to update playback parameters,
for example if the speed changes during playback. Invoke the
callback immediately during StartPlaybackClock with
a negative number for preroll but do not use this to wait for
frames. If video latency is specified, up to the latency’s amount
of frame marked as playmode_Playing will be sent before
StartPlaybackClock is called.

StopPlaybackClock tmResult (*StopPlaybackClock)(
 const tmStdParms* inStdParms,
 const tmInstance* inInstance);

Stop a clock for playback.

Transmitters • 252Adobe Premiere Pro SDK Guide

PushVideo tmResult (*PushVideo)(
 const tmStdParms* inStdParms,
 const tmInstance* inInstance,
 const tmPushVideo* inPushVideo);

Asynchronously pushes a video frame to a transmitter instance.
Will only be called if the transmitter returned outHasVideo.
The list of video frames passed to the transmitter will be negoti-
ated based on the properties returned from QueryVideoMode.
The transmitter is responsible for disposing of all passed in
PPixes.

The instance will be created with the properties of the creating
video segments which may differ from the actual frames that
will be sent to the transmitter. For example, if a sequence is be-
ing played at 1/2 resolution, the instance will be created with the
dimensions of the sequence, but the frames rendered and sent
to the transmitter will be at 1/2. These properties may change by
segment, for example if your transmitter supports multiple pixel
formats, different segments may render to different pixel formats.

tmModule Structures

tmStdParms

This is passed to all calls. Most of it is allocated and filled in by the transmitter on Startup, and
may be modified during SetupDialog.

typedef struct
{
 csSDK_int32 inPluginIndex;
 PrMemoryPtr ioSerializedPluginData;
 csSDK_size_t ioSerializedPluginDataSize;
 void* ioPrivatePluginData;
 piSuitesPtr piSuites;
} tmStdParms;

inPluginIndex If the plug-in has defined multiple transmitters in the
same module, this index value tells them apart.

Transmitters • 253Adobe Premiere Pro SDK Guide

ioSerializedPluginData This data should contain user-selectable settings for the
transmitter, that would be shown in the transmitter set-
tings dialog, and need to persist so they can be saved and
restored from one session to another.

When allocating this for the first time during Startup,
this must be allocated using NewPtr so it can be dis-
posed by the host on shutdown. This must be flat memory
that can be serialized by by the host and will be already
filled in when Startup is called if previously available.

ioSerializedPluginData­
Size

Size of the data above. Set this during Startup, if not
already set.

ioPrivatePluginData This data should contain any memory needed for use
across calls to the transmitter, except the settings data
stored in ioSerializedPluginData.

Allocate this during Startup. Unlike ioSerial­
izedPluginData, it does not need to be flat, and must
be disposed of by the plug-in on Shutdown.

tmPluginInfo

This is to be filled in by the transmitter on Startup.

typedef struct
{
 prPluginID outIdentifier;
 unsigned int outPriority;
 prBool outAudioAvailable;
 prBool outAudioDefaultEnabled;
 prBool outClockAvailable;
 prBool outVideoAvailable;
 prBool outVideoDefaultEnabled;
 prUTF16Char outDisplayName[256];
 prBool outHideInUI;
 prBool outHasSetup;
 csSDK_int32 outInterfaceVersion;
} tmPluginInfo;

outIdentifier Persistent plugin identifier.
outPriority 0 is default, higher priority wins.
outAudioAvailable Set this to kPrTrue if the transmitter supports audio.

Transmitters • 254Adobe Premiere Pro SDK Guide

outAudioDefaultEnabled Set this to kPrTrue if you want to be turned on to
handle audio by default.

outClockAvailable Set this to kPrTrue if providing plug-in based audio.
Currently, even if using host-based audio, a transmitter
must provide a clock - please let us know if you would
like to use host-based audio only, and we will log a bug on
this.

outVideoAvailable Set this to kPrTrue if the transmitter supports video.
outVideoDefaultEnabled Set this to kPrTrue if you want to be turned on to

handle video by default.
outDisplayName[256] Set the display name of the transmitter, up 256 UTF-16

characters, including NULL terminator.
outHideInUI Set this to kPrTrue if you don’t want this to show up as a

user-selectable option in the transmitter choices.
outHasSetup Set this to kPrTrue if providing a setup dialog.
outInterfaceVersion Set this to the tmInterfaceVersion that the trans-

mitter is being compiled for.

tmInstance

This structure contains information for the transmitter to use for initializing an instance.

typedef struct
{
 csSDK_int32 inInstanceID;
 PrTimelineID inTimelineID;
 PrPlayID inPlayID;

 prBool inHasAudio;
 csSDK_uint32 inNumChannels;
 PrAudioChannelLabel inChannelLabels[16];
 PrAudioSampleType inAudioSampleType;
 float inAudioSampleRate;

 prBool inHasVideo;
 csSDK_int32 inVideoWidth;
 csSDK_int32 inVideoHeight;
 csSDK_int32 inVideoPARNum;
 csSDK_int32 inVideoPARDen;
 PrTime inVideoFrameRate;
 prFieldType inVideoFieldType;

 void* ioPrivateInstanceData;

Transmitters • 255Adobe Premiere Pro SDK Guide

} tmInstance;

inInstanceID Instance identifier.
inTimelineID TimelineID, for use with various suite functions. May be

0.
inPlayID PlayID, for use with various suite functions. May be 0.
inHasAudio True if the instance is handling a sequence with audio.
inNumChannels The number of audio channels.
inChannelLabels[16] The identifiers for each audio channel.
inAudioSampleType The format of the audio data.
inAudioSampleRate The sample rate of the audio data.
inHasVideo True if the instance is handling a sequence with video.
inVideoWidth The video resolution.
inVideoHeight
inVideoPARNum The numerator and denominator of the video pixel aspect

ratio.inVideoPARDen
inVideoFrameRate The frame rate of the video.
inVideoFieldType The field dominance of the video.
ioPrivateInstanceData May be written by plug-in in CreateInstance, and

disposed of by DisposeInstance. Need not be serial-
izable by the host.

tmAudioMode

A full description of an audio mode that the transmitter will support. The transmitter should fill
in this information during QueryAudioMode.

typedef struct
{
 float outAudioSampleRate;
 csSDK_uint32 outMaxBufferSize;
 csSDK_uint32 outNumChannels;
 PrAudioChannelLabel outChannelLabels[16];
 PrTime outLatency;
 PrSDKString outAudioOutputNames[16]
} tmAudioMode;

outAudioSampleRate The preferred audio sample rate.
outMaxBufferSize The maximum audio buffer size needed if the transmitter

uses plug-in-based audio to request audio buffers using
the Playmod Audio Suite.

Transmitters • 256Adobe Premiere Pro SDK Guide

outNumChannels The maximum number of audio channels supported.
outChannelLabels[16] Set the audio channel configuration for the output hard-

ware using the appropriate identifiers for each audio chan-
nel.

outLatency This value is only used for playback, not when scrubbing.
It specifies how early to send frames in advance when
audio-only playback starts, and how many frames that will
be sent prior to a StartPlaybackClock call. Use this
value to get playback in sync between the Source/Program
Monitors and external hardware output.
All modes must have the same latency. Take care to not
set this value any higher than necessary, since playback
start will delayed by this amount. A value equivalent to 5
video frames or less is recommended.

outAudioOutputNames[16] New in CS6.0.2. These must be displayable names of phys-
ical audio outputs like “XYZ HD Speaker 1” The audio
output names in tmAudioMode should be allocated by the
plug-in using the String Suite and NOT disposed by the
plugin. The host will take care of disposing these strings.

tmVideoMode

A full description of a video mode that the transmitter will support. Transmitter should fill in this
information during QueryVideoMode.

typedef struct
{
 csSDK_int32 outWidth;
 csSDK_int32 outHeight;
 csSDK_int32 outPARNum;
 csSDK_int32 outPARDen;
 prFieldType outFieldType;
 PrPixelFormat outPixelFormat;
 PrSDKString outStreamLabel;
 PrTime outLatency;
} tmVideoMode;

outWidth The preferred video resolution. Set to 0 if any resolution
is supported.outHeight

outPARNum The preferred video pixel aspect ratio. Set to 0 if any pixel
aspect ratio is supported.outPARDen

Transmitters • 257Adobe Premiere Pro SDK Guide

outFieldType The supported video field type. Set to prFieldsAny if
any field dominance is supported.

outPixelFormat The preferred video pixel format. Set to
PrPixelFormat_Any if any format is acceptable. If
your transmitter would benefit from on-GPU frames,
please let us know.

outStreamLabel Leave this as 0 for now. Stream labels are not yet support-
ed by transmitters (bug group BG127571)

outLatency This value is only used for playback, not when scrubbing.
It specifies how early to send frames in advance when
playback starts, and how many frames that will be sent
prior to a StartPlaybackClock call. Use this value
to get playback in sync between the Source/Program
Monitors and external hardware output.
All modes must have the same latency. Take care to not
set this value any higher than necessary, since playback
start will delayed by this amount. A value equivalent to 5
frames or less is recommended.

tmPlaybackClock

This structure is filled out by the host and sent to the transmitter to describe the playback clock
to be managed by the transmitter. The transmitter uses the callback here to update the host at
regular intervals.

typedef struct
{
 tmClockCallback inClockCallback;
 void* inCallbackContext;
 PrTime inStartTime;
 pmPlayMode inPlayMode;
 float inSpeed;
 PrTime inInTime;
 PrTime inOutTime;
 prBool inLoop;
 tmDroppedFrameCallback inDroppedFrameCallback;
} tmPlaybackClock;

Transmitters • 258Adobe Premiere Pro SDK Guide

tmClockCallback A pointer to a call with the following signature:

void (*tmClockCallback)(
 void* inContext,
 PrTime inRelativeTimeAdjustment);

Call this function when the time changes with a non-speed ad-
justed amount to increment the clock by. This can be called once
per frame in response to PushVideo.

Using a negative time should only be used to wait for device, not
to achieve sync. The transmitter will not receive any frames while
using a negative time.

After the first positive valued clock callback, the time will be in­
StartTime + inRelativeTimeAdjustment * inSpeed.

inCallbackContext Pass this into the clock callback above.
inStartTime Start the clock at this time.
inPlayMode Specifies whether the StartPlaybackClock was set for play-

back or scrubbing.
inSpeed 1.0 is normal speed, -2.0 is double speed backwards.

Informational only. This is useful for the built-in DV transmitter,
which only writes DV captions if playing at regular speed.

inInTime Informational only and will be handled by the host.
inOutTime
inLoop
inDroppedFrame­
Callback

A pointer to a call with the following signature:

void (*tmDroppedFrameCallback)(
 void* inContext,
 csSDK_int64 inNewDroppedFrames);

Use this call to report frames pushed to the transmit plug-in on
PushVideo but not delivered to the device. If every frame
pushed to the transmitter is sent out to hardware on time, then
this should never need to be called as the host will count frames
not pushed to the plug-in.

inNewDroppedFrames should be the number of additional
dropped frames since the last time tmDroppedFrameCall­
back was called.

Transmitters • 259Adobe Premiere Pro SDK Guide

tmPushVideo

Describes a frame of video to be transmitted.

typedef struct
{
 PrTime inTime;
 pmPlayMode inPlayMode;
 PrRenderQuality inQuality;
 const tmLabeledFrame* inFrames;
 csSDK_size_t inFrameCount;
} tmPushVideo;

inTime Describes which frame of the video is being passed in. A nega-
tive value means the frame should be displayed immediately. Use
this value to determine the corresponding timecode for the frame
being pushed.

inPlayMode Pass this into the clock callback above.
inQuality The quality of the render.
inFrames The frame or set of frames to transmit. As of CS6, this will always

be a single frame. tmLabeledFrame is defined as:

typedef struct
{
 PPixHand inFrame;
 PrSDKStreamLabel inStreamLabel;
} tmLabeledFrame;

The frame(s) must be disposed of by the transmitter when done.
inFrameCount The number of frames in inFrames.

Suites

For information on how to acquire and manage suites, as well as information on more suites that
are available to other plug-in types beyond just transmitters, see the SweetPea Suites section.

Playmod Audio Suite

This suite is used to play audio during playback. There are many more functions that were used by
players, still documented in the players chapter. Here we will only consider the single call in the
suite that is relevant to transmitters.

Transmitters • 260Adobe Premiere Pro SDK Guide

Host-Based, or Plug-in Based Audio?

A transmitter has two choices for playing audio: it can ask the host to play the audio through the
audio device selected by the user, or it can get audio buffers from the host and handle its own
playback of audio.

GetNextAudioBuffer

Retrieves from the host the next contiguous requested number of audio sample frames, speci-
fied in inNumSampleFrames, in inInBuffers as arrays of uninterleaved floats. The
plug-in must manage the memory allocation of inInBuffers, which must point to n buf-
fers of floating point values of length inNumSampleFrames, where n is the number of
channels. This call is only available if InitPluginAudio was used. Returns suiteEr­
ror_NoError, suiteError_PlayModuleAudioNotInitialized, or suiteEr­
ror_PlayModuleAudioNotStarted.

prSuiteError (*GetNextAudioBuffer)(
csSDK_int32 inPlayID,
float** inInBuffers,
float** outOutBuffers,
unsigned int inNumSampleFrames);

Parameter Description
inInBuffers Currently unused in CS6. A pointer to an array

of buffers holding inNumSampleFrames
input audio in each buffer, corresponding to
the total number of available input channels.

outOutBuffers A pointer to an array of buffers inNumSam­
pleFrames long into which the host will
write the output audio. There must be N buf-
fers, where N is the number of output chan-
nels for the output channel type specified in
InitPluginAudio.

inNumSampleFrames The size of each of the buffers in the array in
both inInBuffers and outOutBuffers.

Transmit Invocation Suite

This suite can be used by other types of plug-ins to push frames to transmitters. For example, an
effect or titler with a modal setup dialog could push frames to the output.

Video Filters • 261Adobe Premiere Pro SDK Guide

10Video Filters

We strongly recommend using the After Effects SDK to develop effects plug-ins. Almost all of the
effects included in Premiere Pro are After Effects plug-ins, and future development will be based
on the After Effects API.

Video filters process a video frame into a destination frame. Filter parameters can vary with time.
Premiere provides basic user interface in the Effect Controls panel, drawing sliders, color pickers,
angle dials, and checkboxes based on the parameter definitions in the PiPL resource. Video filters
can have their own custom modal setup dialog for additional settings.

If you’ve never developed a video filter before, you can skip the What’s New section, and go di-
rectly to Getting Started.

What’s New

What’s New in Premiere Pro CS5?

In the Effects panel, video filters now appear with badges to advertise if they support YUV, 32-
bit, and accelerated rendering. The user can filter the list of effects to show only the effects that
support those rendering modes. Video filters will automatically receive YUV and 32-bit badges if
they advertise support using the existing fsGetPixelFormatsSupported. Custom badges can also be
created. See Effect Badging for more information.

What’s New in Premiere Pro CS3?

Checkbox controls are now supported directly in the Effect Controls panel.

Filters can specify whether or not they want a setup button in the Effect Controls panel during
fsHasSetupDialog, by returning fsHasNoSetupDialog or fsNoErr. Previously, this was set
in the PiPL resource.

Video Filters • 262Adobe Premiere Pro SDK Guide

Getting Started

Begin with one of the two video filter sample projects, progressively replacing its functionality
with your own.

Resources

Filter plug-ins can use PiPL resources to define their behaviors and supported properties. To
provide any parameters in the Effect Controls panel, they must be defined in the PiPL in ANIM_
ParamAtom sections, as demonstrated in the example below. The ‘no UI’ UI type is for non-key-
frameable parameters. After making changes to the PiPL, rebuild the plug-in each time, so that
the PiPL will be recompiled.

A Filter PiPL Example

#include “PrSDKPiPLVer.h”
#ifndef PRWIN_ENV
#include “PrSDKPiPL.r”
#endif

// The following two strings should be localized
#define plugInName “Cool Video Filter”
#define plugInCategory “SDK Filters”

// This name should not be localized or updated
#define plugInMatchName ”SDK Cool Filter”

resource ‘PiPL’ (16000) {
{

// The plug-in type
Kind {PrEffect},

// The plug-in name as it will appear to the user
Name {plugInName},

// The internal name of this plug-in
AE_Effect_Match_Name {plugInMatchName},

// The folder containing the plug-in in the Effects Panel
Category {plugInCategory},

// The version of the PiPL resource definition
AE_PiPL_Version {PiPLVerMajor, PiPLVerMinor},

Video Filters • 263Adobe Premiere Pro SDK Guide

// The ANIM properties describe the filter parameters, and also how the data is stored
in the project file. There is one ANIM_FilterInfo property followed by n ANIM_
ParamAtoms

ANIM_FilterInfo {
0,

#ifdef PiPLVer2p3
// Non-square pixel aspect ratio supported
notUnityPixelAspectRatio,
anyPixelAspectRatio,
reserved4False,
reserved3False,
reserved2False,

#endif
reserved1False, // These flags are for use by After Effects
reserved0False, // Not used by Premiere
driveMe, // Not used by Premiere
needsDialog, // Not used by Premiere
paramsNotPointer, // Not used by Premiere
paramsNotHandle, // Not used by Premiere
paramsNotMacHandle, // Not used by Premiere
dialogNotInRender, // Not used by Premiere
paramsNotInGlobals, // Not used by Premiere
bgAnimatable, // Not used by Premiere
fgAnimatable, // Not used by Premiere
geometric, // Not used by Premiere
noRandomness, // Not used by Premiere
// Put the number of parameters here
2,
plugInMatchName

},

// There is one ANIM_ParamAtom for each parameter
ANIM_ParamAtom {

// This is the first property - Zero based count
0,
// The name to appear for the control
“Level”,
// Parameter number goes here - One based count
1,
// Put the data type here
ANIM_DT_SHORT,
// UI control type
ANIM_UI_SLIDER,
0x0,

Video Filters • 264Adobe Premiere Pro SDK Guide

0x0, // valid_min (0.0)
0x405fc000,
0x0, // valid_max (127.0)
0x0,
0x0, // ui_min (0.0)
0x40590000,
0x0, // ui_max (100.0)

#if PiPLVer2p3
// New - Scale/dontScale UI Range if user modifies
dontScaleUIRange,

#endif
// Set/don’t set this if the param should be animated
animateParam,
dontRestrictBounds, // Not used by Premiere
spaceIsAbsolute, // Not used by Premiere
resIndependent, // Not used by Premiere
// Bytes size of the param data
2

},

ANIM_ParamAtom {
1,
“Target Color”,
2,
// Put the data type here
ANIM_DT_COLOR_RGB,
// UI control type
ANIM_UI_COLOR_RGB,
0x0,
0x0,
0x0,
0x0,
0x0,
0x0,
0x0,
0x0,

#ifdef PiPLVer2p3
dontScaleUIRange,

#endif
// Set/don’t set this if the param should be animated
animateParam,
dontRestrictBounds,
spaceIsAbsolute,
resIndependent,
// Bytes size of the param data

Video Filters • 265Adobe Premiere Pro SDK Guide

4
},

}
};

Entry Point

short xFilter (
 short selector,
 VideoHandle theData)

selector is the action Premiere wants the video filter to perform. EffectHandle provides
source and destination buffers, and other useful information. Return fsNoErr if successful, or
an appropriate return code.

Selector Table

This table summarizes the various selector commands a video filter can receive.

Selector Description
fsInitSpec (optional) Allocate and initialize your parameters with default

values without popping a modal setup dialog.
fsHasSetupDialog (optional) New for Premiere Pro CS3. Specify whether or not

the filter has a setup dialog.
fsSetup (optional) Allocate memory for your parameters if necessary.

Display your modal setup dialog with default parameter val-
ues or previously stored values. Save the new values to spec­
sHandle.

fsExecute Filter the video using the stored parameters from spec­
sHandle. Be aware of interlaced video, and don’t overlook
the alpha channel!

fsDisposeData (optional) Dispose of any instance data created during fsEx­
ecute.

fsCanHandlePAR (optional) Tell Premiere how your effect handles pixel aspect
ratio.

fsGetPixelFormatsSupported (optional) Gets pixel formats supported. Called iteratively
until all formats have been given.

fsCacheOnLoad (optional) Return fsDoNotCacheOnLoad to disable plug-
in caching for this filter.

Video Filters • 266Adobe Premiere Pro SDK Guide

Selector Descriptions

fsInitSpec

Responding to this selector is optional. This selector is sent when the filter is applied to a clip and
the plug-in is called for the first time. This call can be used to initialize the plug-in parameters
with default values in order to achieve an initial ”silent setup”, in which fsSetup is skipped when
the filter is applied to a clip, to avoid popping the modal dialog that may be needed in fsSetup.

Allocate and pass back a handle to a structure containing the parameter values in specsHandle.
The filter is given the total duration (in samples), and number of the first sample in the source
buffer.

fsHasSetupDialog

New for Premiere Pro CS3. Optional. Specify whether or not the filter has a setup dialog, by re-
turning fsHasNoSetupDialog or fsNoErr.

fsSetup

Optional. Sent when the filter is applied, if fsInitSpec doesn’t allocate a valid specsHandle. Also
sent when the user clicks on the setup link in the Effect Controls Panel. The filter can optionally
display a (platform-dependent) modal dialog to get new parameter values from the user. First,
check VideoHandle.specsHandle. If NULL, the plug-in is being called for the first time.
Initialize the parameters to their default values. If non-NULL, load the parameter values from
specsHandle. Now use the parameter values to display a modal setup dialog to get new values.
Return a handle to a structure containing the parameter values in specsHandle.

In order to properly store parameter values between calls to the plug-in, describe the structure
of your specsHandle data in your PiPL’s ANIM properties. Premiere interpolates animatable
parameter values as appropriate before sending fsExecute.

The filter is given the total duration in samples and the sample number of the first sample in the
source buffer.

During fsSetup, the frames passed to VideoRecord.source will almost always be 320x240.
The exception is if the plug-in is receiving the fsSetup selector when the effect is initially applied,
in which case it will receive a full height frame, with the width adjusted to make the frame square
pixel aspect ratio. For example, a filter applied in a 1440x1080 HDV sequence will receive a full
1920x1080 buffer. The frame is the layer the filter is applied to at the current time indicator. If the
CTI is not on the clip the filter is applied to, the frame is transparent black.

Video Filters • 267Adobe Premiere Pro SDK Guide

If the filter has a setup dialog, the VFilterCallbackProcPtr should be used to get source
frames for previews. getPreviewFrameEx can be used to get rendered frames, although if
this call is used, the video filter should be ready to be called reentrantly with fsExecute.

fsExecute

This is really the only required selector for a video filter, and it’s where the rendering happens.
Take the input frame in VideoHandle.source, render the effect and return the frame to
Premiere in VideoHandle.destination. The specsHandle contains your parameter
settings (already interpolated if animatable). You can store a handle to any additional non-param-
eter data in VideoHandle.InstanceData. If you do so, deallocate the handle in response to
fsDisposeData, or your plug-in will leak memory.

The video your filter receives may be interlaced, in the field order determined by the project set-
tings. If interlaced, your plug-in will be called twice for each frame of video, and each PPix will
be half the frame height.

fsDisposeData

Optional. Called when the project closes. Dispose of any instance data created during fsExecute.
See VideoHandle->InstanceData.

fsCanHandlePAR

Optional. Indicate how your filter wants to handle pixel aspect ratio by returning a combination
of the following flags.

This selector is only sent if several conditions are met. The pixel aspect ratio of the clip to which
the filter is applied must be known, and not be square (1.0). The clip must not be a solid color. The
PiPL bits anyPixelAspectRatio and unityPixelAspectRatio must not be set.

Flag Description
prEffectCanHandlePAR Premiere should not make any adjustment to the source

image to compensate for PAR
prEffectUnityPARSetup Premiere should render the source image to square pixels

during fsSetup
prEffectUnityPARExecute Premiere should render the source image to square pixels

during fsExecute

Video Filters • 268Adobe Premiere Pro SDK Guide

fsGetPixelFormatsSupported

Optional. Gets pixel formats supported. Called iteratively until all formats have been given. Set
(*theData)->pixelFormatSupported to a supported pixel format, and return fsNo­
Err. When all formats have been described, return fsBadFormatIndex. See the field-aware
video filter sample for an example.

fsCacheOnLoad

Optional. Return fsDoNotCacheOnLoad to disable plug-in caching for this filter.

Return Codes

Return Code Reason
fsNoErr Operation has completed without error.
fsBadFormatIndex Return from fsGetPixelFormatsSupported when all pixel formats

have been enumerated.
fsDoNotCacheOnLoad Return from fsCacheOnLoad to disable plug-in caching for this

filter.
fsHasNoSetupDialog Return from fsHasSetupDialog to disable setup button in Effect

Controls panel
fsUnsupported The selector is not recognized, or unsupported.

VideoRecord

A video filter is passed a handle to a VideoRecord with almost every selector.

typedef struct {
 PrMemoryHandle specsHandle;
 PPixHand source;
 PPixHand destination;
 csSDK_int32 part;
 csSDK_int32 total;
 char previewing;
 void * privateData;
 VFilterCallBackProcPtr callBack;
 BottleRec * bottleNecks;
 short version;
 short sizeFlags;
 csSDK_int32 flags;

Video Filters • 269Adobe Premiere Pro SDK Guide

 TDB_TimeRecord * tdb;
 PrMemoryHandle instanceData;
 piSuitesPtr piSuites;
 PrTimelineID timelineData;
 char altName[MAX_FXALIAS];
 PrPixelFormat pixelFormatSupported;
 csSDK_int32 pixelFormatIndex;
 csSDK_uint32 instanceID;
 TDB_TimeRecord tdbTimelineLocation;
 csSDK_int32 sessionPluginID;
} VideoRecord, **VideoHandle;

specsHandle Instance settings, persistent across Premiere sessions. Create
this handle during fsInitSpec or fsSetup. Populated by
Premiere if the filter’s parameters can be manipulated in the
Effect Controls Panel. Use Premiere’s memory allocation call-
backs to allocate memory for the specsHandle.

source PPixHand for the source video frame.
destination PPixHand for the destination video frame, always the same

size as source. Store the output frame here during fsExecute.
part How far into the effect you are. part varies from 0 to total,

inclusive.
total Total length of the video filter. Divide part by total to calculate

the percentage of the time-variant filter for a given fsExecute.
This value doesn’t necessarily correspond to frames or fields.

previewing Unsupported
privateData Data private to Premiere. Pass to the frame-retrieval callback

when requesting a frame.
callBack Pointer to VFilterCallbackProcPtr, used for retriev-

ing frames (or fields, for interlaced video) from source clips.
bottleNecks Pointer to Premiere’s bottleRec functions.
version Version of this structure (kVideoFilterVersion).

Premiere Pro CS5 = VIDEO_FILTER_VERSION_11
Premiere Pro CS3 = VIDEO_FILTER_VERSION_10

sizeFlags Field-rendering information.
flags If doing a lower-quality render, Premiere will pass in kEf­

fectFlags_DraftQuality during fsExecute. The filter
can then optionally render a faster, lower-quality image for
previewing.

tdb Pointer to a time database record describing the sequence
timebase.

Video Filters • 270Adobe Premiere Pro SDK Guide

instanceData Handle to private instance data that persists across invoca-
tions. Allocate the memory for this during fsExecute and
deallocate during fsDisposeData. Do not use this field during
fsSetup.

piSuites Pointer to callback piSuites.
timelineData Only available during fsInitSpec and fsSetup. This opaque han-

dle to the timeline database is required by timelineFuncs
callbacks available in piSuites. This handle is useful in or-
der to have a preview in a modal setup dialog during fsSetup.

altName Unused.
pixelFormatSupported Only valid during fsGetPixelFormatsSupported. Return pixel

type supported.
pixelFormatIndex Only valid during fsGetPixelFormatsSupported. Index of

fourCC of pixel type supported.
instanceID The runtime instance ID uniquely identifies filters during a

session. This is the same ID that is passed to players in prt­
FilterRec.

tdbTimelineLocation A time database record describing the location of the filter in
sequence. Only valid during fsInitSpec and fsSetup.

sessionPluginID This ID should be used in the File Registration Suite for
registering external files (such as textures, logos, etc) that are
used by a plug-in instance but do not appear as footage in the
Project Panel. Registered files will be taken into account when
trimming or copying a project using the Project Manager.

VFilterCallBackProcPtr

Pointer to a callback for retrieving frames (or fields, for interlaced video) from the source clip. Do
not expect real-time performance from this callback.

typedef short (CALLBACK *VFilterCallBackProcPtr)(
 csSDK_int32 frame;
 PPixHand thePort;
 RECT * theBox;
 Handle privateData);

Parameter Description
frame Frame requested. The frame value passed in should be frame *

samplesize. The callback will always return the current field
(upper or lower) during field rendering.

thePort PPixHand where Premiere will store the frame

Video Filters • 271Adobe Premiere Pro SDK Guide

theBox Bounds of the frame you want Premiere to retrieve.
privateData Handle provided by Premiere in VideoRecord.private­

Data

sizeFlags

For sizeFlags, the following bit flags are of interest:

Flag Description
gvFieldsEven The video filter should render upper-field dominance
gvFieldsOdd The video filter should render lower-field dominance
gvFieldsFirst The video filter is currently rendering the dominant field

Additional Details

Fields and Field Processing

In an interlaced project, Premiere calls your video filter once per field. This allows video filters to
have interlaced motion. (*theData)->total will be twice as large, each frame will be half-
height, and rowbytes will double.

Respect the value of rowbytes when traversing data or the output will be incorrect.

Frame Caching

The rendered output of video filters is stored in the host media cache. For example, when the user
scrubs over a frame with a filter on it, the filter will be called to render its effect on the frame and
return the buffer to Premiere. Premiere caches the returned frame, so when the user scrubs over
the same frame, Premiere will return the cached frame without having to call the filter again. If
the user has modified the filter settings, the clip settings, the preview quality, etc, Premiere will
call the filter to render with the new settings, but will keep the previously cache frame for a while.
So if the changes are reversed, Premiere may still have the cached frame to return when appropri-
ate.

If the filter should generate random, non-deterministic output, or if it changes over time without
keyframes, the randomness bit must be set in the ANIM_FilterInfo section in the PiPL (.r
file). If you set the bit to noRandomness, Premiere will only render one frame of a still image.

Video Filters • 272Adobe Premiere Pro SDK Guide

Creating Effect Presets

Effect presets appear in the Presets bin in the Effects panel, and can be applied just like Effects
with specific parameter settings and keyframes. Effect presets can be created as follows:

1) Apply a filter to a clip
2) Set the parameters of the filter, adding keyframes if desired
3) Right-click on the filter name in the Effect Controls panel, and select “Save Preset...”
4) Create preset bins if desired by right-clicking in the Effects panel and choosing “New Presets
Bin”
5) Organize the presets in the preset folders
6) Select the bins and/or presets you wish to export, right-click, and choose “Export Preset”

On Windows, newly created presets are saved in the hidden Application Data folder of the user’s
Documents and Settings (e.g. C:\Documents and Settings\[user]\Application Data\Adobe\
Premiere Pro\[version]\Effect Presets and Custom Items.prfpset). On Mac OS, they are in the
user folder, at ~/Library/Application Support/Adobe/Premiere Pro/[version]/Effect Presets and
Custom Items.prfpset.

Effect Presets should be installed as described in the section, “Plug-in Installation”. Once they are
installed in that folder, they will be read-only, and the user will not be able to move them to a dif-
ferent folder or change their names. User-created presets will be modifiable.

Effect Badging

Starting in CS5, video filters now appear with badges in the Effects panel to advertise if they sup-
port YUV, 32-bit, and/or accelerated rendering. The user can filter the list of effects to show only
the effects that support those rendering modes. Video filters will automatically receive YUV and
32-bit badges if they advertise support using the existing fsGetPixelFormatsSupported. Custom
badges can also be created.

To add your own effect badge, go to the following folder:
On Windows: [App installation path]\Settings\BadgeIcons\
On Mac OS: Adobe Premiere Pro CS5.app/Contents/Settings/BadgeIcons/
In that folder are the PNG graphics that are loaded at runtime for various badges, and an addi-
tional set of ‘Sample-*.png’ and ‘Sample.xml’ files.

1) Make copies of the Sample-*.png files, replacing the “Sample” prefix with the prefix that
matches whatever you want to call the new badge (like ‘NewBadge-*.png’). Edit the PNG as
you’d like, but don’t change the image dimensions.
2) Copy the Sample.xml file to a new name that matches whatever you want to call the new
badge (like ‘NewBadge.xml’). Edit the list of match names that you want to be decorated with
your badge. Change the <Name> tag to the name you chose in step 1 (like ‘NewBadge’). You
can also add your tooltip text as the <DescriptionItem> tags. These tags act as a localiza-

Video Filters • 273Adobe Premiere Pro SDK Guide

tion map with the langid as the key. If a language isn’t found, ‘en_US’ is used by default. Provide
your own GUID in the <Guid> tag.
3) Relaunch the application. You’ll get a badge filter icon next to the others and a badge icons
next to each effect that was listed in the XML file.

Note: ‘Sample’ is a special case that is intentionally excluded. Any other set of *.xml/*.png
files will be used.

Premiere Elements and Effect Thumbnail Previews

Premiere Elements (but not Premiere Pro) displays visual icons for each effect. You will need to
provide icons for your effects, or else an empty black icon will be shown for your effects, or even
worse behavior in Premiere Elements 8. The icons are 60x45 PNG files, and are placed here:

[Program Files]\Adobe\Adobe Premiere Elements [version]\Plug-ins\Common\EffectPreviews\

The filename should be the match name of the effect, which you specify in the PiPL, prefixed with
“PR.” So if the match name was “MatchName”, then the filename should be “PR.MatchName.png”

GPU Effects & Transitions • 274Adobe Premiere Pro SDK Guide

11GPU Effects & Transitions

This chapter describes the additional capabilities available to effects and transitions for GPU
interoperability with Premiere Pro. The GPU extensions allow these plug-ins to have full access
to GPU-resident frames without readback to system memory, when using the Mercury Playback
Engine in a GPU-accelerated mode. Effects and transitions can also optionally tell the host that
they support real-time processing, so that they will not be flagged as non-realtime.

The GPU extensions work on top of effects and transitions built using the After Effects SDK. The
extensions are designed to supplement a regular software effect or transition, which defines the
software rendering path, parameters, custom UI drawing, and other standard interaction. The
GPU effect exists as a new entry point for rendering using the GPU if possible. The software ren-
der path will be used otherwise.

System Requirements

The system requirements for developing GPU effects & transitions are higher than develop-
ing other plug-ins. You’ll need a video card that supports Mercury Playback Engine GPU-
acceleration. Make sure your video card supports the type of video acceleration you are develop-
ing, on the platform you are developing on. See this page for the latest supported video cards:
https://helpx.adobe.com/premiere-pro/system-requirements.html
The CUDA SDK is also needed for CUDA rendering development.

CUDA, OpenCL, Metal, or OpenGL?

The GPU architecture of Premiere Pro is entirely CUDA/OpenCL/Metal, and this is what is ex-
posed through the GPU extensions to the effect/transition APIs. A GPU-accelerated effect may
use any combination of CUDA, OpenCL, and Metal.

If you want, you have the ability to transfer frames from CUDA/OpenCL to OpenGL (though not
always efficiently). Read more about that here.

GPU Effects & Transitions • 275Adobe Premiere Pro SDK Guide

What’s New in Premiere Pro 12.0?

GPU effects and transitions built using this SDK can now be compatible with After Effects 15.0
and later. The sample GPU effect projects have been updated so that they load in both Premiere
Pro and After Effects.

The newly provided PrGPU SDK macros and device functions allow you to write kernels that will
compile on multiple GPU compute languages - OpenCL, CUDA, and Metal.

What’s New in Premiere Pro CC 2015.4?

GPU-accelerated rendering using Metal is now supported for third-party effects and transi-
tions. PrGPUDeviceFramework_Metal has been added as one of the enum values in
PrGPUDeviceFramework.

What’s New in Premiere Pro CC 2014?

OpenCL rendering now also uses the half-precision 16-bit floating point pixel format for ren-
dering. GPU effects and transitions that support OpenCL should implement both 16f and 32f
rendering.

Getting Started

Setting up the Sample Projects

If you are developing an effect, begin with one of the two GPU effect sample projects, progressive-
ly replacing its functionality with your own. Refer to chapter 1 for general instructions on how to
build the SDK projects.

In addition to those general instructions, the sample project is also dependent on the After Effects
plug-in SDK. Download it here. On Windows, create an environment variable pointing to it
named AE_SDK_BASE_PATH, so that the compiler will find the AE headers that the project
includes. On macOS, in Xcode > Preferences > Locations > Source Trees, specify AE_SDK_BASE_
PATH to be the root folder of the AE plug-in SDK you have downloaded and unzipped.

The samples also use Boost, which may be downloaded at boost.org. Download that, and create a
variable named BOOST_BASE_PATH just as you did with AE_SDK_BASE_PATH above.

GPU Effects & Transitions • 276Adobe Premiere Pro SDK Guide

Finally, install Python, if you do not have it already. It may be downloaded at python.org. The
sample projects use this as part of the custom build steps.

Depending on whether your effect will use OpenCL or CUDA or both, you’ll need to download
the CUDA SDK. On Windows, create an environment variable pointing to it named CUDA_
SDK_BASE_PATH, so that the linker will find the right libraries.

Querying for Parameters and other Attributes of a Effect or Transition

You’ll notice that PrGPUFilterRenderParams has some attributes about an effect or transition, but
many things, such as the parameters or duration of the clip to which the plug-in is applied, are
not found in that structure. These attributes will need to be queried using the GetParam() and
GetProperty() helper functions in PrGPUFilterModule.h. For example:

GetProperty(kVideoSegmentProperty_Effect_EffectDuration,
 duration);
GetProperty(kVideoSegmentProperty_Transition_TransitionDuration,
 duration);

Lifetime of a GPU Effect / Transition

A new GPU effect instance is created when an effect/transition is applied in the timeline, or when
an effect parameter is changed. When rendering a series of frames it won’t needlessly be recre-
ated. The Opaque Effect Data suite should be used to share unflattened sequence data between
instances of the same effect on a track item.

Fallback to Software Rendering

When a new GPU effect instance is created, the instance has the option of opting-in or out of
providing GPU rendering. The GPU effect should be reasonably sure it has sufficient resources to
complete the render if it opts-in, because there is no API support to fall back to software render-
ing in the middle of a render.

Calling GetDeviceInfo() in the GPU Device Suite, and checking outDevi­
ceInfo.outMeetsMinimumRequirementsForAcceleration, you can see
if supports the minimum system requirements for acceleration. Do not proceed with
AcquireExclusiveDeviceAccess(), if the minimum requirements are not met.

In emergency situations, when there is not enough GPU memory available to complete a render,
an effect may call PurgeDeviceMemory in the GPU Device Suite to free up memory not ini-
tially available. This will impact performance, and should be used only if absolutely necessary.

GPU Effects & Transitions • 277Adobe Premiere Pro SDK Guide

OpenGL Interoperability

If you want, you have the ability to transfer frames from CUDA/OpenCL to OpenGL (though not
always efficiently).

In Premiere Pro, OpenCL contexts are created with OpenGL interoperability. We expose info
about it through PrGPUDeviceInfo available through PrSDKGPUDeviceSuite.h:

void* outOffscreenOpenGLContextHandle; // CGLContextObj or HGLRC
void* outOffscreenOpenGLDeviceHandle; // HDC

For CUDA interoperability with OpenGL:

CUDA -> OpenGL: Create an OpenGL buffer, map it into CUDA with cuGraphicsMapResources,
get the mapped address with cuGraphicsResourceGetMappedPointer, copy from the CUDA
address to the mapped address with cuMemcpyDtoDAsync, unmap with cuGraphicsUnmapRe-
sources.

OpenGL -> CUDA: Map the OpenGL buffer into CUDA with cuGraphicsMapResources, get the
mapped address with cuGraphicsResourceGetMappedPointer, copy from the mapped address to
CUDA with cuMemcpyDtoDAsync, unmap with cuGraphicsUnmapResources.

Note that on the Mac there is no real OpenGL/CUDA interoperability, and these calls will go
through system memory.

Entry Point

The GPU entry point function will only be called if the current project is using GPU acceleration.
Otherwise, the normal entry point function will be called as described in the After Effects SDK,
or transitions or video filters chapters in this SDK Guide.

Make sure GPU acceleration is activated in File > Project Settings > General > Video Rendering
and Playback > Renderer. If a GPU option is not available, then you will need to install a suitable
video card in your system.

prSuiteError xGPUFilterEntry (
 csSDK_uint32 inHostInterfaceVersion,
 csSDK_int32* ioIndex,
 prBool inStartup,
 piSuitesPtr piSuites,
 PrGPUFilter* outFilter,
 PrGPUFilterInfo* outFilterInfo)

GPU Effects & Transitions • 278Adobe Premiere Pro SDK Guide

If inStartup is non-zero, the effect/transition should startup and initialize the functions needed
to implement PrGPUFilter, as well as the info in PrGPUFilterInfo. If inStartup is false,
then the effect/transition should shutdown, unloading any resources it loaded on startup.

As of CC, inHostInterfaceVersion is PrSDKGPUFilterInterfaceVersion1 == 1.

If a single plug-in supports multiple effects, increment ioIndex to the next value before return-
ing, in order to be called again to describe the next effect.

PrGPUFilter Function Table

PrGPUFilter is a structure consisting of the following functions that a effect/transition can imple-
ment.

Selector Description
CreateInstance Allocate and initialize any GPU resources.
DisposeInstance Release GPU resources.
GetFrameDependencies (optional) If the rendered result of the effect/transition de-

pends on frames other than the input frame, specify these
here.

PreCompute (optional) Precompute.
Render Render.

Function Descriptions

CreateInstance

prSuiteError (*CreateInstance)(
 PrGPUFilterInstance* ioInstanceData);

Creates a GPU filter instance representing an effect or transition on a track item. Returning an
error from CreateInstance will cause this node to be rendered in software for the current set
of parameters. Unlike software instances of effects and transitions, GPU instances are created and
disposed whenever an effect parameter changes. This allows an effect have more flexibility about
opting-in for GPU rendering, depending on the parameters. Separate instances may be called
concurrently.

GPU Effects & Transitions • 279Adobe Premiere Pro SDK Guide

DisposeInstance

prSuiteError (*DisposeInstance)(
 PrGPUFilterInstance* ioInstanceData);

Cleanup any resources allocated during CreateInstance.

GetFrameDependencies

prSuiteError (*GetFrameDependencies)(
 PrGPUFilterInstance* inInstanceData,
 const PrGPUFilterRenderParams* inRenderParams,
 csSDK_int32* ioQueryIndex,
 PrGPUFilterFrameDependency* outFrameDependencies);

Return dependency information about a render, or nothing if only the current frame is required.
Increment ioQueryIndex for additional dependencies.

PreCompute

prSuiteError (*Precompute)(
 PrGPUFilterInstance* inInstanceData,
 const PrGPUFilterRenderParams* inRenderParams,
 csSDK_int32 inIndex,
 PPixHand inFrame);

Precompute a result into preallocated uninitialized host (pinned) memory. Will only be called
if PrGPUDependency_Precompute was returned from GetFrameDependencies.
Precomputation may be called ahead of render time. Results will be uploaded to the GPU by the
host. If outPrecomputePixelFormat is not custom, frames will be converted to the GPU
pixel format.

Render

prSuiteError (*Render)(
 PrGPUFilterInstance* inInstanceData,
 const PrGPUFilterRenderParams* inRenderParams,
 const PPixHand* inFrames,
 csSDK_size_t inFrameCount,
 PPixHand* outFrame);

Render into an allocated outFrame allocated with PrSDKGPUDeviceSuite or operate in place.

GPU Effects & Transitions • 280Adobe Premiere Pro SDK Guide

Result must be in the same pixel format as the input. If the effect grows or shrinks the output area
(e.g. rendering a drop shadow), it is allowable for the effect to allocate and return a different sized
outFrame.

For effects, inFrames[0] will always be the frame at the current time, other input frames
will be in the same order as returned from GetFrameDependencies. For transitions in­
Frames[0] will be the incoming frame and inFrames[1] the outgoing frame. Transitions
may not have other frame dependencies.

Use the utility function GetParam to retrieve the parameter values at the current time.

Return Codes

Return Code Reason
malNoError No error.
malUnknownError Error.

Structure Descriptions

PrGPUFilterInfo

This structure contains some basic info about a GPU filter. It provides access to various suites,
and access to private data where the instance can allocate memory and store data which will be
passed to subsequent functions.

typedef struct {
 csSDK_uint32 outInterfaceVersion;
 PrSDKString outMatchName;
} PrGPUFilterInfo;

Member Description
outInterfaceVersion Set to the GPU API version corresponding to the version de-

fined in the SDK you are using.

GPU Effects & Transitions • 281Adobe Premiere Pro SDK Guide

outMatchName outMatchName must be equal to a registered software filter,
if NULL will default to the module’s PiPL.

PrGPUFilterInstance

This structure contains some basic info about a GPU filter. It provides access to various suites,
and access to private data where the instance can allocate memory and store data which will be
passed to subsequent functions.

typedef struct {
 piSuitesPtr piSuites;
 csSDK_uint32 inDeviceIndex;
 PrTimelineID inTimelineID;
 csSDK_int32 inNodeID;
 void* ioPrivatePluginData;
 prBool outIsRealtime;
} PrGPUFilterInstance;

Member Description
piSuites Standard suites.
inDeviceIndex For use with PrSDKGPUDeviceSuite.
inTimelineID For use with PrSDKVideoSegmentSuite.
inNodeID For use with PrSDKVideoSegmentSuite.
ioPrivatePluginData Used by a plug-in to store instance data, never touched by the

host.
outIsRealtime Specify if the plug-in is likely to play in real-time, used to

determine whether the segment is red, yellow, or unmarked in
the timeline.

PrGPUFilterRenderParams

This structure describes the current render request.

typedef struct {
 PrTime inClipTime;
 PrTime inSequenceTime;

 // Render properties
 PrRenderQuality inQuality;
 float inDownsampleFactorX;

GPU Effects & Transitions • 282Adobe Premiere Pro SDK Guide

 float inDownsampleFactorY;

 // Frame properties
 csSDK_uint32 inRenderWidth;
 csSDK_uint32 inRenderHeight;
 csSDK_uint32 inRenderPARNum;
 csSDK_uint32 inRenderPARDen;
 prFieldType inRenderFieldType;
 PrTime inRenderTicksPerFrame;

 pmFieldDisplay inRenderField;
} PrGPUFilterRenderParams;

Member Description
inClipTime The time of the current render, relative to clip start
inSequenceTime The time of the current render, relative to sequence start
inQuality Render quality; one of the PrRenderQuality enum values
inDownsampleFactorX Horizontal downsample factor
inDownsampleFactorY Vertical downsample factor
inRenderWidth Video resolution
inRenderHeight
inRenderPARNum Video pixel aspect ratio, described as a fractional number

with separate values for numerator and denominator.inRenderPARDen
inRenderFieldType Render field type
inRenderTicksPerFrame Video frame rate
inRenderField GPU rendering is always done on full-height progressive

frames unless PrGPUFilterFrameDependency.out­
NeedsFieldSeparation is false. inRenderField
indicates which field is being rendered.

PrGPUFilterFrameDependency

This structure describes any dependencies for a rendered frame.

typedef struct {
 PrGPUFilterFrameDependencyType outDependencyType;

 // Dependence on other frame times
 csSDK_int32 outTrackID;
 PrTime outSequenceTime;

 // Dependence on precomputation phase

GPU Effects & Transitions • 283Adobe Premiere Pro SDK Guide

 PrPixelFormat outPrecomputePixelFormat;
 csSDK_uint32 outPrecomputeFrameWidth;
 csSDK_uint32 outPrecomputeFrameHeight;
 csSDK_uint32 outPrecomputeFramePARNumerator;
 csSDK_uint32 outPrecomputeFramePARDenominator;
 prFieldType outPrecomputeFrameFieldType;
 csSDK_size_t outPrecomputeCustomDataSize;

 prBool outNeedsFieldSeparation;
} PrGPUFilterFrameDependency;

Member Description
outDependencyType The dependency type. Could be either:

PrGPUDependency_InputFrame,
PrGPUDependency_Precompute,
or PrGPUDependency_
FieldSeparation

outTrackID Specify which track is a dependency. Set to
0 for the current track

outSequenceTime Set the sequence time which is a depen-
dency.

outPrecomputePixelFormat Dependence on precomputation phase
outPrecomputeFrameWidth
outPrecomputeFrameHeight
outPrecomputeFramePARNumerator
outPrecomputeFramePARDenominator
outPrecomputeFrameFieldType
outPrecomputeCustomDataSize Only needed if outPrecomputePix­

elFormat is custom
outNeedsFieldSeparation Indicates if the plug-in may operate on

both fields simultaneously (eg non-spatial
and non-time varying)

PrGPU SDK Macros

The PrGPU SDK macros and device functions allow you to write kernels that will compile on
multiple GPU compute languages - CUDA, OpenCL, and Metal. These languages have an
enormous overlap - a C98 language subset, and by using the porting macros and functions to
abstract out the differences, you can write portable code. You can still access API specific
features not covered by the porting set but you’ll need to include an alternate code path for the
other APIs.

GPU Effects & Transitions • 284Adobe Premiere Pro SDK Guide

Currently the SDK does not provide host side code to compile or launch arbitrary kernels, but
there are SDK examples that show how to do this for the different APIs.

The macros are not part of the plug-in API - they are provided as a utility if you would like to
used them. This gives you broad latitude to fork them and make any changes you see fit without
breaking plug-in compatibility. On the Adobe end, we may expand and modify the SDK kernel
porting set in future releases to cover other compute APIs or other enhancements.

External Dependencies

The macros do add one external source dependency - Boost (boost.org). We use the Boost
preprocessor package to manipulate kernel definitions.

Depending on how you choose to compile and deploy your kernels, we also provide a small
python script that may be useful (See “Preprocessing as a Separate Step”)

Include Paths

You need to add some include paths to your kernel compilation environment:
• the path to PrGPU/KernelSupport/ (found in the SDK at Examples/Projects/GPUVideoFilter/

Utils/)
• the path to the Boost library

Defines

You will also need to define a symbol to tell the header file what API to process when compiling
the kernel:
• Metal: -DGF_DEVICE_TARGET_METAL=1
• OpenCL:

• -DGF_DEVICE_TARGET_OPENCL=1
• -DGF_OPENCL_SUPPORTS_16F=1 or 0, depending on whether you will support half

(16-bit float) access for this device. Some older cards are quite slow at half support, or just
don’t support it.

• CUDA: the KernelCore.h header will automatically sense the cuda compiler and will #define
GF_DEVICE_TARGET_CUDA 1 for you.

Only one device target flag will be active in any given compilation. The header the define the
device target macros to 0 for the inactive APIs. Feel free to use these macros in your code for
any API specializations. Outside of the header, we don’t need to do this much.

GPU Effects & Transitions • 285Adobe Premiere Pro SDK Guide

Header Files

• KernelCore.h - basic header macros. You’ll certainly want these
• KernelMemory.h - global device memory access abstractions for float and half
• FloatingPoint.h - common floating point routines. These mostly hide naming differences

across APIs.

You’ll want to include them like this in your kernel:
#include “PrGPU/KernelSupport/KernelCore.h”

The folder contains additional files used by the above files.
One thing to watch out for is whether your projects are tracking header dependencies properly. If
not, you’ll need to manually recompile kernels when include files change. This is true whether or
not you use the SDK porting set, so you’ve likely already sorted this out.

Top Level Kernel Files

You can organize your code and projects as you like, but we find it convenient to have separate
top level kernel files for each API (.cl, .cu, and .metal) that just include shared code and are
otherwise nearly empty. This makes build rules much easier.

Preprocessing as a Separate Step

If you compile the kernel source on the customer machine, you may wish to preprocess the
kernel at plug-in compile time, and store the kernel source in your plug-in. A python script is
provided that will convert preprocessed source to a character array. The script is in
Examples/Projects/GPUVideoFilter/Utils/CreateCString.py. See the ProcAmp example for usage.

You can also compile kernels (which is always the case for CUDA) at plug-in compile time, in
which case you don’t need the python script, or a separate preprocessing run. You will need to
package the compiled kernel in your plug-in if you go this route.

The ProcAmp plug-in example uses a preprocessing step for OpenCL and Metal.

Declaring Kernels

Metal kernels require syntax that is quite different than OpenCL or CUDA, and the PrGPU
macros use the Boost preprocessing package to express parameters. This is by far the most
complicated part of the package, so grab a fresh cup of coffee and sit back for a read.

The GF_KERNEL_FUNCTION macro is used to pass values as parameters (OpenCL/CUDA) or
in a struct (metal). The macro will create an API-specific kernel entry point which will call a

GPU Effects & Transitions • 286Adobe Premiere Pro SDK Guide

function that it defines, leaving you to fill in the body. The macro uses Boost preprocessor
sequences to express a type/name pair:

(float)(inValue)

These pairs are then nested into a sequence of parameters:

((float)(inAge))((int)(inMarbles))

There are different categories of parameters, such as buffers, values, and kernel position. Each
category sequence is a separate macro parameter. Example usage:

 GF_KERNEL_FUNCTION(RemoveFlicker, //kernel name, then comma,

 ((GF_PTR(float4))(inSrc))
 //all buffers and textures go after the first comma
 ((GF_PTR(float4))(outDest)),

 ((int)(inDestPitch))
 //After the second comma, all values to be passed
 ((DevicePixelFormat)(inDeviceFormat))
 ((int)(inWidth))
 ((int)(inHeight)),

 ((uint2)(inXY)(KERNEL_XY))
 //After the third comma, the position arguments.
 ((uint2)(inBlockID)(BLOCK_ID)))

 {
 <do something interesting here>
 }

In the example above, the host does not pass the position values when invoking the kernel.

Position values are filled in automatically by the unmarshalling code generated by the
GF_KERNEL_FUNCTION macro. The code you write will actually end up in a device function
that the unmarshalling code will call. See the ProcAmp example plug-in for usage.

Kernels that use statically sized shared memory use a different macro,
GF_KERNEL_FUNCTION_SHARED. Please see the header for details.

Declaring Device Functions

By comparison, device functions are a snap to write:

GPU Effects & Transitions • 287Adobe Premiere Pro SDK Guide

GF_DEVICE_FUNCTION float Average(float a, float b) {...

Other Macros and Functions

There’s a variety of other macros and functions in the KernelSupport headers. Please see the
Headers and examples for details.

Suites

For information on how to acquire and manage suites, see the SweetPea Suites section in the
Universals chapter.

GPU Device Suite

This suite provides info on any GPU devices available. For example, GetDeviceInfo() al-
lows an effect/transition to see if the device supports OpenCL or CUDA.

Use this suite to get exclusive access to a device using AcquireExclusiveDeviceAccess
and ReleaseExclusiveDeviceAccess. If needed, you can reconcile devices using the
outDeviceHandle passed back from GetDeviceInfo().

Device memory should ideally be allocated through this suite. In some cases you may find it
more efficient to use a texture / image object as the source. With CUDA, you can bind a texture
reference to an existing linear buffer. With OpenCL, you can create an image object from an ex-
isting 2D buffer object using image_2d_from_buffer. Temporary allocations are also fine but may
be rather slow.

Opaque Effect Data Suite

This suite provides effects a way to share unflattened sequence data between instances of the same
effect on a track item. The data is opaque to the host and effects are responsible for maintaining
thread safety of the shared data. The host provides reference-counting that the effect can use to
manage the lifetime of the shared data. Here’s an overview of how this suite should be used:

When the effect is applied, in PF_Cmd_SEQUENCE_SETUP, the effect plug-in allo-
cates and initializes the sequence data in PF_OutData->out_data. Then it calls
AcquireOpaqueEffectData(). The opaque effect data does not yet exist, so the plug-in
allocates it, and calls RegisterOpaqueEffectData, and then copies over the data from the
sequence data. So both sequence data and opaque effect data are allocated.

GPU Effects & Transitions • 288Adobe Premiere Pro SDK Guide

Then PF_Cmd_SEQUENCE_RESETUP is called (multiple times) for clones of the effect used for
rendering. The effect instance knows it’s a clone because the PF_InData->sequence_data
is NULL (there is a special case if the effect has Opaque Effect Data – in that case, its render clones
will receive PF_Cmd_SEQUENCE_RESETUP with a NULL sequence_data pointer). It then calls
AcquireOpaqueEffectData(). As a render clone, it relies on this opaque effect data,
rather than sequence data, and does not try to copy the sequence data to opaque effect data.

When, on the other hand, SEQUENCE_RESETUP is called with valid sequence_data in PF_
InData, this is not a render clone. The plug-in unflattens this sequence data. It then calls
AcquireOpaqueEffectData(), and if the opaque effect data does not yet exist (i.e. when
reopening a saved project), the plug-in allocates it, and calls RegisterOpaqueEffectData.
It then copies the sequence data to opaque effect data.

On SEQUENCE_FLATTEN, the plug-in takes the unflattened data, flattens it, and disposes of the
un-flat data.

When SEQUENCE_SETDOWN is called (it may be called multiple times to dispose of render
clones), ReleaseOpaqueEffectData() is called.

instanceID

The Opaque Effect Data Suite functions need the instanceID of the effect. For the software entry
point, you can obtain this using GetFilterInstanceID() in PF_UtilitySuite, defined in
PrSDKAESupport.h. For the GPU Render entry point, you can use the following code:
csSDK_uint32 instanceID;
GetProperty(kVideoSegmentProperty_Effect_RuntimeInstanceID,
 instanceID);
...where GetProperty() is defined in PrGPUFilterModule.h, and the
kVideoSegmentProperty_* IDs are defined in PrSDKVideoSegmentProperties.h.

AE Transition Extensions • 289Adobe Premiere Pro SDK Guide

12AE Transition Extensions

This chapter describes how to build native transitions in Premiere Pro based on the After Effects
API. From a user-perspective, plug-ins built this way can show their parameters directly in the
Effect Controls panel, even providing custom parameter UI in that panel or in the Sequence
Monitor. Such plug-ins can run not only in Premiere Pro, but also in After Effects, although they
will appear as effects rather than transitions.

The transition extensions work on top of effects built using the After Effects SDK. Since AE ef-
fects only have a single input, the second input is a layer parameter defined by the plug-in.

PF_TransitionSuite

In PrSDKAESupport.h, we’ve added PF_TransitionSuite::RegisterTransitionI
nputParam(). This call must be made before the PF_ADD_PARAM() call during PF_Cmd_
PARAM_SETUP. Pass in the param to be used as the input layer for the other side of the transi-
tion. This enables you effect to be applied between two clips in the timeline just like our native
transitions, but it will show up in the Effect Controls panel with full keyframable parameters
similar to existing AE effects.

Getting Started

Setting up the Sample Project

If you are developing an transition, begin with the sample project, named SDK_CrossDissolve,
progressively replacing its functionality with your own. Refer to chapter 1 for general instruc-
tions on how to build the SDK projects.

In addition to those general instructions, the sample project is also dependent on the After Effects
SDK. Download it here. On Windows, create an environment variable pointing to it named “AE_
SDK_BASE_PATH”, so that the compiler will find the AE headers that the project includes. On

AE Transition Extensions • 290Adobe Premiere Pro SDK Guide

MacOS, in XCode > Preferences > Locations > Source Trees, specify AE_SDK_BASE_PATH to be
the root folder of the AE SDK you have downloaded and unzipped.

Depending on whether your transition will use OpenCL or CUDA or both, you’ll need to
download the CUDA SDK. On Windows, create an environment variable pointing to it named
“CUDA_SDK_BASE_PATH”, so that the linker will find the right libraries.

Compatibility Considerations

For compatibility with plug-in hosts that doesn’t support the AE Transition Extensions, a plug-
in should check first for the existence of the suite. If it isn’t available, the plug-in should act as a
normal effect. This is demonstrated in the SDK_CrossDissolve sample project.

Device Controllers • 291Adobe Premiere Pro SDK Guide

13Device Controllers

Device controllers drive hardware devices, such as cameras and tape decks, enabling timecode-
accurate, hardware-assisted video capture and output to tape. Device controllers are used when
working in the Capture and Edit to Tape panels. A device controller can implement one or more
communication protocols, and should gracefully handle differences across various hardware that
support the same protocol.

Device controllers are usually called by Premiere when the user is in the Capture panel or Edit
to Tape panel, for example, when using the VTR transport controls in either panel to navigate
through video on a VTR. But device controllers can also be driven by recorder plug-ins during
capture. Especially when capturing video, the device controller’s operation becomes deeply inter-
twined with the recorder. Device controllers work along with recorders to update Premiere with
timecode information from the hardware.

If you’ve never developed a device controller before, you can skip the What’s New section, and go
directly to Getting Started.

What’s New?

What’s New in CC October 2013

The new command cmdSetDeviceHandler was added. This command tells the device controller
which panel is using the device controller -- either the Capture panel, or Export to Tape panel.

What’s New in CC July 2013?

In the July 2013 release of CC, the new capability flag fCanPrintToTape was added for a de-
vice controller supporting Edit to Tape using the new panel to specify whether or not it supports
Print to Tape mode. fCanDelayMovieStart was added for a device controller to optionally
specify that it wants to handle Delay Movie Start on its own. If the flag is set, the value as set by

Device Controllers • 292Adobe Premiere Pro SDK Guide

the user will be passed in DeviceRec.delayFrames during an Edit to Tape. The DeviceRec.
version has been incremented to kDeviceControlAPIVersion13 for plug-ins to distin-
guish which version they are running in.

What’s New in CC?

In CC, the new Edit to Tape panel provides an integrated UI with settings and controls for export-
ing a clip or sequence to tape. The device controller can optionally support various common set-
tings in the Edit to Tape panel. Three types of record modes are now natively supported: Print to
Tape, Insert, and Assemble modes. Although a device controller can still provide a custom setup
dialog for any additional settings, the panel eliminates much of the need for custom UI. It also al-
lows for integrated device presets, and some bonus capabilities like adding Bars and Tone / Black
Video / Universal Counting Leader to the start of the edit to tape. To update your device control-
ler to use the new panel, set fCanInsertNoUI along with any other flags during dsExecute/
cmdGetFeatures. Then take your cmdInsertEdit implementation and integrate your logic to
respond to the new record modes sent in cmdNewMode.

What’s New in CS6.0.1?

In CS6.0.1, DroppedFrameProc was added to give device controllers a way to get the number
of frames dropped during an insert edit. A device controller can use this to provide the feature
to abort an Export to Tape if frames are dropped. This method is already superceded by the new
Edit to Tape panel functionality in CC.

Getting Started

You’ll need a thorough understanding of the device(s) you hope to control before developing a
device control plug-in. Begin with the sample project, progressively replacing its functions with
your own. Will your device controller be used for the capture process, or for output to tape, or
both? Below are notes describing how to support these in your plug-in.

Resources

Device controllers use a basic PiPL to specify their name and the match name that Premiere uses
to identify them. When making changes to the PiPL resource, rebuild the plug-in each time, so
that the PiPL will be recompiled.

Device Controllers • 293Adobe Premiere Pro SDK Guide

Entry Point

short xDevice (
 short selector,
 DeviceHand theData)

selector is the action Premiere wants the device controller to perform. DeviceHand is a handle to
DeviceRec, which provides all pertinent information. Return dmNoError if successful, or an
appropriate return code.

Capture

Timecode

Since the device controller and recorder sample plug-ins both only simulate hardware, they will
return different timecode values to the app. You can set the Capture panel to only display device
controller timecode by going to Preferences > Capture, and check “Use device control timecode”.
On the other hand, leaving this box unchecked and observing the different timecodes returned is
a good way to get a feel for when the device controller timecode is used, and when the recorder
timecode is used.

Preroll Time

The Preroll Time value is set in the Capture panel, in the Settings tab. The value defaults to zero
seconds, but it may be set to any positive value chosen by the user. Adjusting the Preroll Time
setting will have an effect on the DeviceRec.preroll value sent during dsExecute/cmdLo­
cate. The value with be converted from seconds into frames for the device controller.

Timecode Offset

The Timecode Offset value is set in the Capture panel, in the Settings tab. The value defaults to
zero frames, but it may be set to any value chosen by the user when they calibrate their VTR to
account for any latencies. So when using the same tape in two separate VTRs, to capture the
same timecode span, the Timecode Offset may be used to account for any differences in the way
the VTRs report timecode back to Premiere. Using the Timecode Offset, the in point sent to the
device controller can be shifted earlier or later, while the timecode embedded in the clip after the
capture will remain the same.

Adjusting the Timecode Offset setting will be transparent to the device controller, but will have
an effect on the DeviceRec.timecode value sent during dsExecute/cmdLocate. Starting in

Device Controllers • 294Adobe Premiere Pro SDK Guide

CS5.5, a negative Timecode Offset value is acceptable. Note that for In/Out capture, the earliest
allowable time for the in point is 2 seconds. If the provided in point is earlier than that, it will be
automatically adjusted to start at 2 seconds.

Edit to Tape

Audio Channels

The device controller should specify how many audio channels are supported by the connected
device, so that the Edit to Tape panel will only enable valid audio channel controls. During
cmdGetFeatures, the device controller should set the bits corresponding to the audio chan-
nels available on the device in DeviceRec.exportAudioChannels.
Then later if performing an Insert Edit, during modeRecordInsert, if the device supports au-
dio channel selection, the bits in exportAudioChannels will be set by the host correspond-
ing to audio channels to export: A1 == bit 0, A2 == bit 1, etc.

Record

Starting in CC, the Edit to Tape panel provides three types of export modes: Insert, Assemble, and
Print to Tape. The device controller should specify if it supports Assemble mode by setting fCa­
nAssembleEdit along with any other flags during dsExecute/cmdGetFeatures.

When the user presses the Record button in the Edit to Tape Panel, Premiere will send dsExecute/
cmdNewMode with either modeRecord, modeRecordInsert, or modeRecordAssem­
ble, depending on the Export Type set in the Edit to Tape panel.

Hitting the Record button with Export Type set to Print to Tape sends modeRecord. This
record mode is a simple crash record that has no preroll before the in point and causes noticable
breaks in the video signal. Setting Assemble sends modeRecordAssemble. This mode uses
a preroll before the in point for a smooth transition at the in point, but the out point ends the
recording abruptly which will leave a noticable break if there is any subsequent video.
Setting Insert sends modeRecordInsert. This mode uses a preroll before the in point and also
ends the recording at the outpoint without any breaks in the video signal. This is also the only
mode that allows for selective replacement of specific video/audio channels.

DeviceRec.exportFlags will denote whether video and/or closed captioning should be
exported or not, and DeviceRec.exportAudioChannels will denote which audio chan-
nels to export. DeviceRec.timecode provides the in point of the edit to tape operation, and
DeviceRec.preroll provides the user-specified preroll.

Premiere will play the video output in the Edit to Tape panel. When the record is complete, the

Device Controllers • 295Adobe Premiere Pro SDK Guide

device controller should return from dsExecute/cmdNewMode.

Preview Edits

Starting in CC, the device controller should specify if it supports previewing edits by setting
fCanPreviewEdit along with any other flags during dsExecute/cmdGetFeatures. If
Preview is supported, the button will be activated in the Edit to Tape panel, and when pressed,
the device controller will receive the same messaging as described above when pressing Record,
except that previewEdit will be set in DeviceRec.exportFlags.

Abort on Dropped Frames

New in CC, when using the Edit to Tape panel, this is handled transparently to the device control-
ler. If a transmit plug-in or renderer reports dropped frames, Premiere will stop playback and
send dsExecute/modeStop to the device controller.

In Premiere Pro CS6.0.1, or in CC if the device controller doesn’t support the Edit to Tape panel,
use the DroppedFrameProc callback to query the current number of frames dropped during
an insert edit. A device controller can use this to provide the feature to abort an Export to Tape if
frames are dropped. It can make the call regularly during Export to Tape, and if the value re-
turned is non-zero, return dmExportToTapeFinished to abort playback.

Closed Captioning

When using the Edit to Tape panel, the device controller should specify if it supports Closed
Captioning export by setting fCanUseCC along with any other flags during dsExecute/
cmdGetFeatures.

If the user checks the Insert Closed Captioning checkbox and chooses Record or Preview, the
device controller should use the Captioning Suite to get the captions and send them out with the
export.

Selector Table

This table summarizes the various selector commands a device controller can receive.

Selector Description
dsInit Create private instance data, and initialize hardware connection.
dsRestart Restart device controller – used at startup to reconnect to a de-

vice.

Device Controllers • 296Adobe Premiere Pro SDK Guide

dsSetup Display a modal dialog with any user settings and info the device
controller wishes to show the user.

dsExecute Execute a specified device control command. One a device con-
troller has been initialized, most of the various user-driven inter-
actions will be sent as dsExecute selectors with a subcommand.

dsCleanup Dispose of any allocated data structures.
dsQuiet Disconnect from the device, but don’t dispose of allocated struc-

tures.
dsHasOptions Return dmHasNoOptions to disable the device controller op-

tions button.

Selector Descriptions

dsInit

This will be sent when the device controller is selected in the UI for the first time, because no
device controller private data is stored in the application preferences. When there is already exist-
ing private data in the preferences, dsRestart will be sent instead. To delete the preferences, hold
down Ctrl-Alt-Shift on Win and Ctrl-Opt-Shift on MacOS when launching the app.

Allocate a memory handle to private data, and store the handle in DeviceRec.deviceData.
Initialize the hardware connection, and choose a default operating mode if more than one is avail-
able. A dialog can be presented to prompt the user for settings.

If the connection fails, return dmDeviceNotFound. Keep in mind, though, that the host will
still send messages to the device controller, in case the hardware comes on-line later.

dsRestart

Reestablish connections to hardware devices. This selector is similar to dsInit, but the private
instance data, deviceData, is already populated. If you have just modified the definition of the
private data structure, you can run into problems unless you provide some version checking here.
dsInit can fall into the dsRestart case.

dsSetup

This selector is sent when the user hits the Device Settings button in the Edit to Tape panel, the
Options button in the Device Control area of the Capture panel, or the Options button in the
Device Control area of the Preferences.

Device Controllers • 297Adobe Premiere Pro SDK Guide

Display a modal dialog with any user settings and info the device controller wishes to show the
user. If your device controller doesn’t require user input, this selector can be safely ignored, but
should return dmNoErr. To specify that the Setup button in the device control options should
not be shown, respond to dsHasOptions.

dsExecute

Perform a device control operation based on the command in the DeviceRec. See the
Commands section below for detailed descriptions.

dsCleanup

Disconnect from hardware and dispose of the plug-in’s private instance data (stored in device­
Data).

dsQuiet

Like dsCleanup; disconnect from the device, but don’t dispose of private instance data. dsRestart
will be sent to reconnect the device.

dsHasOptions

Return dmHasNoOptions to disable the device controller options button.

Return Codes

Return Code Reason
dmNoErr Operation has completed without error.
dmDeviceNotFound The device is not available.
dmTimecodeNotFound The device cannot read the timecode from the media, or

there is none to be read.
dmBadTimecode The device has timecode but it doesn’t trust it.
dmCantRecord The device is unable to record to the media.
dmUserAborted The operation has stopped because the user cancelled.
dmLastErrorSet The device controller set the last error string using the

Error Suite.
dmExportToTapeFinished The device controller is signaling the end of the export to

tape operation.

Device Controllers • 298Adobe Premiere Pro SDK Guide

dmTapeWriteProtected Return value during Export To Tape if tape is write pro-
tected.

dmNoTape Return value during Export To Tape if there is no tape in
the deck.

dmLastInfoSet The device controller set the last info string using the
SweetPea Error Suite.

dmLastWarningSet The device controller set the last warning string using the
SweetPea Error Suite.

dmHasNoOptions Return during dsHasOptions to disable the device control-
ler options button..

dmUnknownError The device controller set the last error string using the
Error Suite.

dmUnsupported The selector is not recognized, or unsupported.
dmGeneralError Unspecified error.

DeviceRec

A device controller is passed a handle to a DeviceRec with every selector. Yes, we know, it’s a
monster.

typedef struct {
 PrMemoryHandle deviceData;
 short command;
 short mode;
 csSDK_int32 timecode;
 short timeformat;
 short timerate;
 csSDK_int32 features;
 short error;
 short preroll;
 CallBackPtr callback;
 PauseProcPtr PauseProc;
 ResumeProcPtr ResumeProc
 long xtimecode;
 long keycode;
 short editmode;
 short exteditmode;
 Print2TapeProcPtr PrintProc;
 HWND parentWindow;
 piSuitesPtr piSuites;
 char* displayName;
 TimecodeUpdatePtr TimecodeUpdateProc;

Device Controllers • 299Adobe Premiere Pro SDK Guide

 void* classID;
 long version;
 short videoStreamIsDrop;
 short autoDetectDropness;
 char* currentDeviceIDStr;
 long preferredScale;
 unsigned long preferredSampleSize;
 DroppedFrameCountPtr DroppedFrameProc;
 csSDK_uint32 exportAudioChannels;
 csSDK_uint16 exportFlags;
 csSDK_int32 delayFrames;
} DeviceRec, *DevicePtr, **DeviceHand;

deviceData Handle to private data allocated during dsInit or dsRestart. Saved in
the application preferences, and restored when the app is restarted.

command The command to be performed when you receive dsExecute.
mode Used in three ways. For dsExecute/cmdNewMode, mode contains

your device’s new mode. For dsExecute/cmdStatus, mode is where you
indicate the device’s current mode (the last mode reported will still
be there). For dsExecute/cmdShuttle, mode contains the shuttle rate
(-100 to 100).

timecode Used three ways. For dsExecute/cmdGoto and dsExecute/cmdLocate,
the timecode field indicates the timecode to which your should move.
For dsExecute/cmdStatus, return the deck’s current timecode position
via the timecode field, where kInvalidTimecode will display
“N/A” (not available), -2 will blank the timecode display, and -3 will
display “Searching…”. For dsExecute/cmdJogTo, timecode specifies the
location to which you should jog.

timeformat Reports the format of timecode for a dsExecute/cmdStatus; 0 for non-
drop frame, 1 for drop-frame.

timerate Reports the frame rate of timecode for a dsExecute/cmdStatus call. Set
to 24, 25, 30, or 60.

Note, for 23.976 fps footage, set timerate to 24, and timefor­
mat to 1. 24 fps timecode will be used, as expected. Of course, there
is no such thing as 24 fps drop-frame timecode, but this was the way
23.976 fps support was added within the constraints of the existing
API.

features Reports the device’s features in response to a dsExecute/cmdGet­
Features call.

error Set this field to an appropriate error code and return a non-zero value
from your device controller.

Device Controllers • 300Adobe Premiere Pro SDK Guide

preroll Used by dsExecute/cmdLocate. Preroll is how far before (smaller time-
code) the seek time specified in timecode you should seek. The pre-
roll value is the product of a calibration sequence the user performs.

callback Pointer to a callback to use during dsExecute/cmdLocate to
determine if the user is attempting to abort.

typedef csSDK_int32 (*CallBackPtr) (void);

If the return value is non-zero, the user has attempted to abort.
PauseProc Pointer to a callback that you can use to temporarily pause any

sequence grabber operations in a device-controlled window. It is
defined as follows:

typedef void (*PauseProcPtr) (void);
ResumeProc A pointer to a routine to call to resume sequence capture after calling

PauseProc. Every call to PauseProc must be matched by a call
to ResumeProc.

typedef void (*ResumeProcPtr) (void);

Call these routines before putting up an error alert, for instance:

(*(*theData)->PauseProc)();
// your error handler here
(*(*theData)->ResumeProc)();

If PauseProc isn’t called before putting up an alert (or any other
dialog), video will be played over it

xtimecode Duration of the movie being exported (used for the Export to Tape).
keycode Unused.
editmode Can be any combination of the following flags to enable user actions:

insertVideo,
insertAudio1,
insertAudio2,
insertTimeCode,
insertAssemble,
insertPreview

exteditmode Unused.

Device Controllers • 301Adobe Premiere Pro SDK Guide

PrintProc New in CC, this callback is no longer needed as the host drives the
Edit to Tape rather than the device controller.

A pointer to a plug-in function Premiere calls to print to tape.

csSDK_int32 (*Print2TapeProcPtr)(
PrMemoryHandle deviceHand,
long selector);

deviceHand is passed to the plug-in in DeviceRec. selector can
be setupWaitProc, idle, or complete.

See cmdInsertEdit.
piSuites Pointer to universal callback suites.
displayName A 255 character string to display the name of the device the plug-in is

currently controlling.
TimecodeUpdate-
Proc

During cmdLocate, use this to report timecode.

void (*TimecodeUpdatePtr)(
csSDK_int32 outTimecode,
void* outClassID);

classID Used for TimecodeUpdateProc
version Premiere informs the device controller of the API version, so the

plug-in can modify it’s behavior to support multiple versions, if de-
sired.

Premiere Pro CC, October 2013 update
 - kDeviceControlAPIVersion14
Premiere Pro CC, July 2013 update
 - kDeviceControlAPIVersion13
Premiere Pro CC - kDeviceControlAPIVersion12
Premiere Pro CS6.0.1 - kDeviceControlAPIVersion11
Premiere Pro CS5.5 - kDeviceControlAPIVersion105
Premiere Pro CS5 - kDeviceControlAPIVersion10
Premiere Pro CS3 and CS4 - kDeviceControlAPIVersion9

videoStreamIs­
Drop

If autoDetectDropness was set earlier, and the recorder called
FormatChangedFunc to provide the drop-frame attribute of the
timecode, Premiere will call cmdSetDropness and use this to tell the
device controller if the video stream is drop-frame.

autoDetectDrop­
ness

Set this to true if you want Premiere to notify the device controller
whether or not the video stream uses drop-frame timecode. Premiere
will get this timecode information from the active recorder. The result
will be sent during cmdSetDropness in videoStreamIsDrop.

Device Controllers • 302Adobe Premiere Pro SDK Guide

current-
DeviceIDStr

For internal use only.

preferredScale The current timebase. Use this rather than calling piSuites-
>utilFuncs->getSettings(kSettingsProjectScale).

preferredSample­
Size

New in Premiere Pro CS3. The current timebase. Use this rather than
calling piSuites->utilFuncs->getSettings(kSetting
sProjectSampleSize).

DroppedFrameProc New in CC, if the Edit to Tape panel is supported, this callback is no
longer needed as Abort on Dropped Frames is handled transparently
to the device controller. In Premiere Pro CS6.0.1, use this callback to
query the current number of frames dropped during an insert edit. A
device controller can use this to provide the feature to abort an Edit
to Tape if frames are dropped.

csSDK_int32 (*DroppedFrameProc)(
void* inClassID);

exportAudio-
Channels

New in CC. During cmdGetFeatures, the device controller
should set the bits corresponding to the audio channels available on
the device.
Then later during the record commands, if the device supports audio
channel selection, the bits will be set by the host corresponding to
audio channels to export: A1 == bit 0, A2 == bit 1, etc.

exportFlags New in CC. During the record commands, one or more of the follow-
ing may be set:
exportVideo - set if user has checked the Video checkbox in the
Edit to Tape panel
processCCData - set if user has checked the Insert Closed
Caption Data checkbox in the Edit to Tape panel
previewEdit - set if user has pressed the Preview button in the
Edit to Tape panel

delayFrames New in CC July 2013. If fCanDelayMovieStart was set, during
an Edit to Tape, this will be the value as set by the user (in frames) in
the Edit to Tape panel, and Premiere Pro will let the device controller
handle the Delay Movie Start.

Commands

When the plug-in receives dsExecute, DeviceRec.command indicates the behavior requested.

Command Description
cmdGetFeatures Fill in the features field with the device’s features.
cmdStatus Return the deck mode and current timecode position.

Device Controllers • 303Adobe Premiere Pro SDK Guide

cmdNewMode Change the deck’s mode.
cmdGoto Move asynchronously to a particular time and return in

pause mode.
cmdLocate Move synchronously to a particular time and return in

play mode.
cmdShuttle Shuttle the deck at a specified rate.
cmdEject Eject media.
cmdInsertEdit No longer needed in CC and later, if the Edit to Tape panel

is supported. In previous versions this was sent for Export
To Tape. This has been left in for backwards-compatibility.

cmdGetDeviceDisplayName Provide the device display name for display in the Capture
Panel.

cmdSetDropness Tells the device controller whether the current timecode is
drop-frame or non-drop-frame.

cmdGetCurrentDeviceIdentifier For internal use only.
cmdSetDeviceHandler New in CC October 2013. Optional. Tells the plug-in

which panel is using the device controller -- either the
Capture panel, or Export to Tape panel.

cmdGetFeatures

Populate DeviceRec.features with the features of your device controller, using the follow-
ing flags OR’d together in a bit-field:

Flag Description
fExportDialog The device controller has an export dialog and wishes to control

the edit.
fCanInsertEdit No longer needed in CC. In previous versions, this flag would tell

Premiere that Insert Edit mode ws supported.
fDrvrQuiet Quiet mode is supported.
fHasJogMode Jog is supported.
fCanEject Media ejection is supported.
fStepFwd Stepping the device forward one frame is supported.
fStepBack Stepping the device backward one frame is supported.
fRecord Your device can record.
fPositionInfo Your device can retrieve position information.
fGoto Your device can seek to a particular frame. You must also set

fPositionInfo, and respond to cmdGoto.
f1_5 Your device can play at one-fifth speed.

Device Controllers • 304Adobe Premiere Pro SDK Guide

fBasic Your device supports the basic five deck control operations: stop,
play, pause, fast-forward, and rewind.

fReversePlay Your device can play in reverse.
fCanLocate Your device can accurately locate a particular timecode and sup-

ports cmdLocate. Please do so; cmdLocate is more accurate than
cmdGoto.

fCanShuttle Your device is capable of variable-speed shuttle operations, for-
ward and backward.

fNoTransport Device supports no transport modes (play, stop, etc).
fCanAssembleEdit New in CC. Set if the device controller supports modeRecor­

dAssemble.
fCanPreviewEdit New in CC. Set if modePreviewRecord is supported for the

Edit to Tape panel.
fCanInsertNoUI New in CC. Set if new Edit to Tape panel is supported.

Otherwise, legacy device controllers can continue to function as
previously built for CS6 and earlier.

fCanUseCC New in CC. Set if Closed Captioning is supported. This will en-
able the Insert Closed Captioning Data checkbox in the Edit to
Tape panel.

fCanPrintToTape New in CC July 2013. Set to tell Premiere Pro that the device
controller supports the “Print to Tape” option in the Export Type
popup of the Edit to Tape panel.

fCanDelay
MovieStart

New in CC July 2013. Set this flag to specify that the device
controller wants to handle Delay Movie Start on its own. If the
flag is set, the value as set by the user (in frames) in the Edit to
Tape panel will be passed in DeviceRec.delayFrames, and
Premiere Pro will let the device controller handle the delay.

cmdStatus

Premiere sends cmdStatus to obtain the deck’s current mode (play, pause, etc.) and the current
timecode position. Store the device’s current mode in mode, and the current timecode value in
timecode. Be sure to set timerate and timeformat as described in DeviceRec.

The values of mode and timecode persist. If you only know one of the two pieces of information,
store it, and ignore the other. If your device controller makes two calls to determine these values,
alternately request one and return the other.

cmdNewMode

Puts the device into a new operating mode, specified in mode.

Device Controllers • 305Adobe Premiere Pro SDK Guide

Mode Description
modeStop Stop.
modePlay Play.
modePlay1_5 Play at 1/5 speed.
modePlay1_10 Play at 1/10 speed.
modePause Pause.
modeFastFwd Fast forward.
modeRewind Rewind.
modeRecord Record. This is the original record mode for Print to Tape.
modeGoto Go to time specified in DeviceRec.timecode.
modeStepFwd Step one frame forward.
modeStepBack Step one frame backward.
modePlayRev Play backward at full speed.
modePlayRev1_5 Play backward at 1/5 speed.
modePlayRev1_10 Play backward at 1/10 speed.
modeTapeOut No tape is in device.
modeLocal Device is unavailable.
modeRecordPause Pause in record mode.
modeRecordPlayFastFwd Fast forward in play mode.
modeRecordPlayRewind Rewind in play mode.
modeRecordAssemble New in CC. This is selected by the user in the Edit to Tape

panel, in the Export Type drop-down.
modeRecordInsert New in CC. This is selected by the user in the Edit to Tape

panel, in the Export Type drop-down.

cmdGoto

This is sent, for example, when typing in a new timecode value into the current timecode hot-
text control in the lower left hand corner of the Capture panel. It can also be sent when the user
chooses Capture In/Out, if the device controller does not support cmdLocate.

Begin seeking to the timecode specified by timecode. Set up an asynchronous seek, save off the
desired timecode in private data, and return immediately with mode set to modeGoto.

Premiere will then send cmdStatus repeatedly, so that you can continue to query the time-
code of the device as it moves toward the desired timecode. In modeGoto, Premiere will put
“Searching…” in the status panel. Later, when the device arrives at the desired timecode, place
the device in modePause (if you were able to complete the seek) or modeStop (if there was an
error).

Device Controllers • 306Adobe Premiere Pro SDK Guide

cmdLocate

This is sent, for example, when the user chooses Capture In/Out, if the device controller has set
fCanLocate during cmdGetFeatures.

Seek to an exact frame specified in DeviceRec.timecode, minus any amount specified by
the Preroll Time, and return immediately with the device in modePlay. Unlike cmdGoto, which
is asynchronous, this is a synchronous operation. Do not return until the operation is complete
or an error occurs.

cmdShuttle

Sent when the user moves the shuttle control; mode is the shuttle speed:

Use intermediate speeds if the device supports them. If it doesn’t implement shuttling but does
support multiple play speeds, Premiere will simulate shuttling by playing at different rates, based
on the shuttle control position. Better results can be obtained by directly supporting shuttling
with the cmdShuttle command.

cmdInsertEdit

No longer needed starting in CC, if the Edit to Tape panel is supported. Otherwise, this was sent
if the device controller supports insert mode and wants to control the edit (set fExportDia­
log and fCanInsertEdit during cmdGetFeatures to do so).

When the user invokes Export To Tape, Premiere prepares to play the chosen clip and sets the fol-
lowing in the DeviceHand:

command = cmdInsertEdit
mode = modeRecord
xTimecode = duration of the movie

Premiere then enters a loop, calling the device controller with the above DeviceHand. When
the device controller returns, Premiere sends the PrintProc specified in DeviceHand.set­
upWaitProc. Premiere will have already performed the preroll; everything is ready to play.

When the device controller returns, Premiere plays the clip, sending idle to PrintProc once
per frame. Premiere again calls the plug-in’s entry point with the DeviceHand, allowing the
device controller to perform any cue operations. Premiere calls PrintProc with complete when
finished. If cmdInsertEdit is proceeding correctly PrintProc should always return 0.

Device Controllers • 307Adobe Premiere Pro SDK Guide

cmdGetDeviceDisplayName

Sent so the device controller can provide the device display name for display in the Capture Panel.
The device controller fills in DeviceRec.displayName.

cmdSetDropness

Sent only if DeviceRec.autoDetectDropness is set to true. This selector tells the device
controller whether the current timecode is drop-frame or non-drop-frame, as determined by the
active recorder. The timecode information is passed in videoStreamIsDrop in DeviceRec.
Sent when recorder determines drop-frame attribute and calls FormatChangedFunc.

cmdSetDeviceHandler

New in CC October 2013. Optional. Tells the plug-in which panel is using the device control-
ler -- either the Capture panel, or Export to Tape panel. DeviceRec.mode will contain either
handlerCapture or handlerEditToTape.

Control Surfaces • 308Adobe Premiere Pro SDK Guide

14Control Surfaces

Starting in Premiere Pro CC 2014, a control surface plug-in can interface with a hardware control
surface. This is the API that provides built-in support for EUCON and Mackie devices to con-
trol audio mixing and basic transport controls. The API supports two-way communication with
Premiere Pro, so that hardware faders, VU meters, etc are in sync with the application.

Compile the sample plug-in into a subfolder of the main application folder: Plug-ins\
ControlSurface\

You should see the plug-in in the PPro UI in Preferences > Control Surface, when you hit the Add
button, as one of the options in the Device Class drop-down next to Mackie and EUCON (cur-
rently shows as “SDK Control Surface Sample”).

You’ll want to implement handlers for any relevant functions defined in the plugin suites here:
adobesdk\controlsurface\plugin
And to do that, you can use any APIs to call into the host defined in the host suites here:
adobesdk\controlsurface\host

Calling Sequence

When the application is launched, the control surface plug-ins are loaded, and the entry point
is called. The host ID and API version is passed in, and the plug-in passes back ADOBESDK_
ControlSurfacePluginFuncs, an array of function pointers.

Next, the Startup() function is called, where the plug-in registers a suite of functions as defined in
ControlSurfacePluginSuite.h. For each base class it will inherit from (defined in adobesdk\con-
trolsurface\plugin\wrapper), it calls RegisterSuite(). These suites are the way for the host applica-
tion to call the control surface plug-in later on. There are separate base classes for the transport
controls, audio mixer, Lumetri Color controls, and more.

Then, CreatePluginInstance() is called. When a project is opened, Connect() is called. Here
the plug-in instantiates a ControlSurface object, which inherits from any of the previously men-

Control Surfaces • 309Adobe Premiere Pro SDK Guide

tioned base classes. It acquire any host suites it needs, and then it passes back a reference to the
ControlSurface object.

Getting Started

Please write us if you would like further guidance.

